Схема люминесцентной лампы, электрическая схема и принцип действия лампы дневного света.
Лампы дневного света довольно широко распространены в использовании, поскольку обладают некоторыми преимуществами перед лампами накаливания. А именно, они экономнее в потреблении электроэнергии, поскольку меньше расходуют энергии на образование тепла, так же у них более рассеянный свет и имеется возможность выбирать свечение с определённым цветом, хотя наиболее популярные и ходовые всё же являются с белым свечением. Ну, а что касается специфики их работы, то скажу следующее: для любой люминесцентной лампы или лампы дневного света, необходимы определённые условия. То есть, поскольку в них содержится инертный газ с парами ртути, а как известно, газы являются плохими проводниками электрического тока. И для их зажигания требуется высокое напряжение пробоя.
Так же, для облегчения этого зажигания, делаются внутри люминесцентной лампы спиральки, которые при подачи напряжения накаляются и тем самым облегчают выход электронов из металла электродов.
Ещё дроссели умеют выдавать большие ЭДС, за счет внутренней самоиндукции, но для этого необходимо создать в цепи питания кратковременное прерывания, в виде замыкания и размыкания. Это и обеспечивает ещё один элемент схемы, под названием стартёр. Итак, на вход схемы лампы дневного света подается сетевое напряжение 220в. Оно проходит через дроссель и поступает на первую спиральку лампы, с неё переходит на стартёр и с него идёт во вторую спиральку, с которой поступает на вторую клемму сетевого напряжения. Первым срабатывает стартёр.
Напряжение зажигания тлеющего разряда стартера меньше напряжения сети, но больше рабочего напряжения лампы. Его внутренние контакты нагреваются и замыкаются, тем самым обеспечивая прохождение тока через спиральки лампы, нагревая их до температуры 800-900 градусов. Это позволяет легче проходить запуску лампы. После, контакты стартера остывают и размыкаются, что даёт кратковременный импульс на дроссель, а он выдаёт выброс высокого напряжения на электроды люминесцентной лампы, обеспечивая тем самым пробой и дальнейшее горение. Что касается подключённой емкости на входе. Это сетевой фильтр для гашения реактивной мощности, которую вырабатывает дроссель. Без ёмкости конечно лампа то же будет работать, но при этом потребляя больше энергии.
В первом варианте схемы происходит включение одной лампы. В этом случае элементы схемы будут такими: если лампа на 40Вт, то и дроссель на 40Вт, а стартер на напряжение 220в (если лампа одна). При подключении двух ламп к одному дросселю, общая схема уже имеет вид варианта 2, на нашем рисунке. В этом случае, дроссель на 40 Вт, а лампы на 20Вт и стартера, напряжением по 127в каждый. Ну а конденсатор, в первом и втором варианте можно поставить на напряжение не меньше сетевого, а лучше с запасом и емкостью около 0.22мкФ. На этом данная тема, схема люминесцентной лампы электрическая принципиальная, закончена. До следующих статей и удачи.
Видео по этой теме:
P.S. Это простейшие дроссельные схемы люминесцентных ламп, но имеется множество без дроссельных схем, которые мы рассмотрены в дальнейшем.
Как подключить лампу дневного света?
Ремонт квартиры
Люминесцентные лампы достаточно часто стали применяться в быту, и на данный момент обладают высокой популярностью, поскольку тарифы на электроэнергию с каждым разом растут выше и выше, и в связи с этим применение стандартных ламп накаливания превращается в достаточно недешевое решение.
Конструкция лампы дневного света
Для того чтобы разобраться, как функционирует люминесцентная лампа, необходимо хотя бы поверхностно изучить ее конструкцию. В состав лампы входит тончайшая цилиндрическая колба из стекла, которая обладает разным диаметром и формой.
Разновидности ламп:
- прямые;
- кольцевые;
- U-образные;
- компактные (с цоколем Е14 и Е27).
Несмотря на то, что все они различаются по своему облику, в них всех есть внутри люминесцентное покрытие, электроды и заполнено это все инертным газом, в котором присутствует ртуть в парообразном состоянии. Электроды внешне похожи на маленькие спирали, которые приобретают высокую температуру на несколько секунд и поджигают газ. С помощью данного газа люминофор (которым обработана колба лампы), начинает светиться. Поскольку спирали для розжига обладают небольшими габаритами, то обычное напряжение, из квартирной электросети для них непригодно. Для этого используют специализированные изделия – дроссели, которые позволяют регулировать силу тока до нужного значения, с помощью индуктивного сопротивления. Кроме этого, чтобы спираль загоралась лишь на миг и не перегорела раньше срока, применяют еще один прибор – стартер, который позволяет после поджигания газа в колбе лампы, выключить накал электродов.
Как работают люминесцентные лампы?
На контакты нашей конструкции подается электрический ток 220 вольт, который идет через дроссель на стартовую нить лампы. Затем ток поступает на стартер, который включается и доставляет напряжение на следующую нить, подсоединенную к сетевому контакту.
Довольно часто на входных контактах ставят «емкость», которая выполняет функции сетевого фильтра. Благодаря ей часть большой мощности, поставляемой дросселем, гасится, и лампа «съедает» меньше энергии.
Как подключить люминесцентную лампу?
Схема подключения ламп дневного света, которую вы видели выше, относится к элементарной и справедлива для подключения одной лампы. Для организации работы двух люминесцентных ламп, нужно слегка модифицировать схему, следуя тому же правилу последовательного подключения всех приборов.
В нашем варианте применяется пара стартеров, по одному на каждую лампу. При подсоединении двух ламп к единственному дросселю необходимо брать в расчет его заявленную мощность, которая написана на его кожухе. К примеру, если он обладает мощность 60 Вт, то к нему, возможно подключить две идентичные лампы, обладающие нагрузкой не выше 30 Вт.
Кроме этого есть схема подключения люминесцентной лампы без применения стартеров. С помощью установки электронных балластных изделий «поджиг» ламп производится моментально, без свойственного «мерцания» со стартерным вариантом электроуправления.
Подсоединить лампу к подобным изделиям достаточно несложно: на их кожухе нанесен полный порядок действий при установке, какие клеммы лампы нужно подключить к соответствующим контактам. Однако чтобы стало абсолютно ясно, как сделать подсоединение люминесцентной лампы к электронному балласту, надо рассмотреть несложную схемку:
К достоинству подобного электроуправления относится отсутствие вспомогательных узлов, требуемых для стартерного варианта подключения ламп. Кроме этого, с адаптацией проекта повышается надежность функционирования осветительного изделия, поскольку убираются вспомогательные подключения кабелей со стартерами, которые как показывает практика, являются еще и достаточно ненадежными приборами.
Обычно, в наборе с электронным балластным устройством уже есть все требуемые кабеля для установки, в связи с этим нет надобности, что-то выдумывать и производить лишние траты на приобретение отсутствующих элементов.
Как проверить лампу дневного света?
В случае если лампа перестала гореть, то, скорее всего, произошел разрыв вольфрамовой нити, с помощью которой подогревается газ, тем самым провоцируя свечение люминофора. В течении своей жизни вольфрам потихоньку испаряется, накапливаясь на внутренней поверхности лампы. Вместе с этим на концах колбы из стекла образуется темный слой, говорящий о том, что в ближайшее время лампа перегорит.
Как узнать, работоспособна ли вольфрамовая нить? Для этого, нужно взять стандартный тестер, с помощь которого возможно замерить сопротивление проводника и дотронуться его клеймами до выводных контактов лампы.
Если мультиметр отражает сопротивление примерно 10 Ом, то это лучше всех слов сигнализирует нам, о том, что нить работоспособна.
Если же прибор показывает абсолютный 0, то эта лампа обладает обрывом спирали, вследствие чего не загорается.
Разрыв нити случается из-за того, что с течением времени спираль становится тоньше и потихоньку нарастает напряжение, идущее по ней. В связи с увеличением напряжения в первую очередь ломается стартер – это заметно по свойственному «мерцанию» ламп. После смены вышедших из строя ламп и стартеров конструкция обязана функционировать как часы.
Если при включении люминесцентных ламп слышны не характерные шумы или чувствуется смрад гари, необходимо срочно отключить осветительный прибор и изучить дееспособность всех его узлов. Есть вариант того, что контактные зоны ослабли, и происходит нагревание подсоединенных кабелей. Помимо того, если низкокачественно произведен дроссель, возможно замыкание обмоток с последующей поломкой люминесцентных ламп.
Вы можете пропустить чтение записи и оставить комментарий. Размещение ссылок запрещено.
Схемы для подключения ЛДС
Для подключения обычных ламп дневного света существует несколько схем. При их применении необходимо обращать внимание на суммарную мощность нагрузки (особенно при подборе дросселей-балластов) и напряжения на отдельных элементах (особенно стартерах — стартеры выпускаются двух типов: полное напряжение (220В) и половинное)
В некоторых дросселях-балластах имеется первичная коммутация проводников В связи с этим схема подключения ЛДС может немного измениться. Поможет в этом схема на корпусе пуско-регулирующего устройства.
Большинство схем с применением ЛДС имеет на входе конденсатор-фильтр для защиты потребителей от помех (импульсов) при включении-выключении приборов.
1. Самая простая схема для подключения одиночной лампы дневного света. При использовании одиночных ламп возможно мерцание света лампы, что неблагоприятно сказывается на восприятии света. В этом случае следует отдавать предпочтение современным электронным схемам пуско-регулирующих устройств (ПРА). Там же могут быть указаны предельные мощности нагрузки на данный прибор.
2. В светильниках с применением ЛДС обычно используют парное количество ламп (2 или 4). В них эффект мерцания света менее заметен.
При этом сами трубки ламп соединяются парами последовательно или параллельно. В одной из веток может ставиться фазосдвигающий конденсатор для уменьшения общего мерцания — лампы мерцают поочередно и суммарно имеем более стабильное свечение.
а) Последовательная схема. (на стартерах половинное напряжение — тип S2).
б) Параллельная схема. (на стартерах полное напряжение 220В)
в)Параллельная схема с фазосдвигающим конденсатором.
г) Современные схемы. В современных люминесцентных светильниках применяют бездроссельную и безстартерную схему. Эти устройства заменяет электронная схема (электронный балласт), обеспечивающая надежный пуск и стабильную работу ЛДС.
Промышленность выпускает два вида электронных устройств для пуска и работы люминесцентных ламп:
. — в пластиковом корпусе из которого выходят подсоединительные проводники.Схема подключения обычно нарисована на корпусе прибора.
— сама электронная плата без защитного корпуса, вставляемая в специальные держатель. В момент написания статьи его размеры близки к размерам спичечного коробка. При обслуживании такой электронной платы следует обратить внимание на состояние защитного лакового покрытия. Оно легко разрушается при вытягивании из держателей. При последующей установке назад возможно замыкание элементами крепления участков платы и выхода ее из строя. Можно кромку платы обвернуть изолентой в месте упора держателей.
Эти же схемы применяют и в настольных люминесцентных лампах.
Анализ поисковых запросов показывает, что часть пользователей интересуется люминесцентными светильниками. Применяются обычно светильники из двух или четырех люминесцентных ламп (схема 4-х лампового светильника).
На данный момент могу проинформировать о наличии электронного балласта для светильника из 4-х ламп по 18 Вт. Вскрытие корпуса показало, что в нем применена схема аналогичная для ламп-экономок. На одной плате смонтировано две схемы для подключения двух ЛДС каждая..
На мой взгляд экономичнее в плане ремонта использовать 2 отдельных балласта (другого типа) по одному на две лампы. В первом случае при поломке придется менять весь прибор, а во втором две лампы будут работать.
д) Редкие схемы. В некоторых случаях применяют бездроссельную схему с уможителем напряжения. Поскольку для розжига ЛДС необходимо напряжение несколько большее 220В, в этой схеме имеется умножитель напряжения (4 диода и 2 конденсатора), обеспечивающий стабильное включение и работу лампы даже с перегоревшей нитью разогрева (она здесь просто не нужна). Параметры электронных компонентов не указаны (схема интересна только отдельным энтузиастам)- их легко можно найти при надобности на других сайтах. Диоды и конденсаторы в принципе легкопокупаемые на радиорынках, а вот с резистором (довольно большая мощность) могут быть проблемы в наличии.
Есть и другие варианты схем питания ЛДС (Н.П. постоянным током и др.), но практического применения они не имеют. При питании постоянным током на колбе лампы со временем образуется темная область (пятно), уменьшающая силу света. Высоковольтные схемы питания ЛДС приводят к быстрому износу электродов лампы.
На практике нестандартные схемы включения ЛДС никакого выигрыша во время эксплуатации НЕ ДАЮТ и интересны только для одиночных любителей попробовать свои силы.
Некоторые особеннности в работе люминесцентных ламп.
— мигание лампы, лампа не может включиться — для устранения сначала поменять стартер, если не поможет — поменять лампу, проверить напряжение в сети.
— мерцание люминесентной лампы в т.ч. и компактной экономки даже в выключенном состоянии — чаще всего встречается если выключатель установлен на нулевом проводе.
Мне понравилась фраза — лампы накаливания — это вчерашний день, лампы дневного света — сегодняшний, а полупроводниковые (LED) — завтрашний день. Электрическая проводка делается на будущее. Перетереть стены, потолок, поменять обои — данные работы делаются чаще чем замена электропроводки. Электропроводку следует делать с ориентацией на завтрашний день.
Также после 2015 года поставки люминесцентных ламп на Украину будут прекращаться. Идет переход на светодиодные источники света. Сейчас в продаже имеются практически все типы ламп (по внешнему виду) для замены устаревших источников света (ламп накаливания, люминесцентных) на современные светодиодные (LED). При установке светодиодных аналогов необходимо переделать схему подключения в самом светильнике. Фактически выбросить дросселя, стартеры, Оставляем только подсоединительные элементы (цокольный патрон, держатель), в которые вставляется (вкручивается) современня LED лампа. Светодиодные аналоги ламп подключаются напрямую в сеть 220В. Необходимые вспомогательные элементы находятся внутри самих приборов.
Схема подключения ламп дневного света
Лампы дневного света уже достаточно прочно и давно вошли в жизнь большинства людей. Сейчас они становятся все более популярными, ведь постоянно дорожает электроэнергия и пользованием обычными лампами накаливания слишком дорогое удовольствие. Также известно, что компактные энергосберегающие лампы могут приобрести далеко не все, кроме того, большинство современных люстр нуждаются в большом количестве подобных ламп, из-за чего возникают сомнения в их экономичности. Именно поэтому во многих современных квартирах устанавливают люминесцентные дневного света, в чем помогает схема лампы дневного света, на которой можно увидеть принципы ее работы.
Устройство люминесцентных ламп
Для понятия принципов работы лампы дневного света необходимо изучить ее устройство. Она состоит из тонкой цилиндрической колбы из стекла, которая имеет разные формы и диаметры. Люминесцентные лампы бывают нескольких видов:
- U-образные;
- прямые;
- кольцевые;
- компактные (со специальными цоколями Е14, а также Е27).
Все они имеют разный внешний вид, однако их объединяет наличие электродов, люминесцентного покрытия и закачанного инертного газа с парами ртути внутри. Электроды являются небольшими спиралями, раскаляющимися на небольшой временной промежуток, зажигая, таким образом, газ, благодаря которому тот люминофор, который нанесен на стенки лампы светиться. Известно, что спирали для розжига небольшого размера, поэтому стандартное напряжение, которое есть в домашней электросети, не подходит для них. Поэтому, в этих целях пользуются специализированными приборами под названием дроссели, с их помощью ограничивается сила тока до нужного значения, благодаря их индуктивному сопротивлению. Кроме того, чтобы спираль сумела быстро разогреться, однако не перегореть, схема лампы дневного света показывает еще и стартер, отключающий накал электродов после того, как газ в трубках лампы зажигается.
Принципы работы ламп дневного света
Во время работы на клеммы подается напряжение 220В, проходящее через дроссель прямо на первую спираль данной лампы. Потом она переходит на стартер, срабатывающий, а также пропускающий ток на спираль, которая подключена к сетевой клемме. Это демонстрирует схема подключения ламп дневного света.
Достаточно часто на входных клеммах может устанавливаться конденсатор, который играет роль специализированного сетевого фильтра. Именно благодаря его работе, частица реактивной мощности, вырабатываемой в процессе работы дросселем, гасится. В результате получается, что лампа потребляет меньшее количество электроэнергии.
Проверка ламп дневного света
Если ваша лампа перестала зажигаться, вероятная причина данной неисправности – обрыв вольфрамовой нити, разогревающей газ и заставляющей светиться люминофор. Во время работы вольфрам со временем испаряется, начиная оседать на стенках лампы. В процессе, стеклянная колба на краях имеет темный налет, который предупреждает о возможном выходе из строя данного устройства.
Проверить целостность вольфрамовой нити очень просто, нужно взять обычный тестер, измеряющий сопротивление проводника, после чего надо прикоснуться щупами к выводным концам данной лампы. Если прибор покажет, например, сопротивление, составляющее 9. 9 Ом, тогда это будет значить, что нить цела. Если же во время проверки пары электродов тестер покажет полный ноль, данная сторона имеет обрыв, поэтому включение ламп дневного света не совершиться.
Спираль может оборваться из-за того, что на протяжении времени ее использования нить истончается, поэтому постепенно возрастает напряжение, которое сквозь нее проходит. Благодаря тому, что напряжение постоянно возрастает, стартер выходит из строя, что можно увидеть по характерному «морганию» данных ламп. После того, как будут заменены сгоревшие лампы и стартеры, схема будет работать без наладок.
Если же во время включения ламп слышны посторонние звуки либо же ощутим запах гари, тогда необходимо сразу же обесточить светильник, проверив работоспособность его элементов. Может быть, что на самих клеммных соединениях появилась слабина и подключение проводов прогревается. Кроме этого, в случае некачественного изготовления дросселя, может случиться витковое замыкание обмоток, что приведет к выходу ламп из строя.
Как подключить люминесцентную лампу?
Подключение лампы дневного света является очень простым процессом, схема его предназначается для розжига только одной лампы. Чтобы подключить пару ламп дневного света, нужно слегка изменить схему, действуя при этом по единому принципу последовательного соединения элементов.
В подобном случае необходимо пользоваться парой стартеров, по одному на лампу. Во время подключения пары ламп к единому дросселю, необходимо обязательно учитывать его номинальную мощность, указанную на корпусе. К примеру, если его мощность составляет 40 Вт, тогда есть возможность подключить к нему пару одинаковых ламп, максимальная нагрузка которых равна 20 Вт.
Кроме того, бывает подключение лампы дневного света, в котором не используются стартеры. Благодаря применению специализированных электронных балластных устройств, лампа разживается мгновенно, при этом не «моргая» стартерными схемами управления.
Подключение люминесцентной лампы к электронному балласту
Подключать лампу к электронным балластам очень просто, ведь на их корпусе есть детальная информация, а также схематически показано соединение контактов лампы с соответственными клеммами. Однако, чтобы было более понятно, как же подключить лампу дневного света к данному устройству, можно просто тщательно изучить схему.
Главное преимущество данного подключения – отсутствие дополнительных элементов, которые нужны для стартерных схем, управляющих лампами. Кроме того с упрощением схемы значительно увеличивается надежность работы всего светильника, ведь исключаются дополнительные соединения со стартерами, которые достаточно ненадежные устройства.
В основном, все провода, которые нужны для сборки схемы, идут в комплекте с самим электронным балластным устройством, поэтому отпадает необходимость изобретать велосипед, что-нибудь придумывать и нести при этом дополнительные расходы на приобретение недостающих элементов. В этом видео-ролике Вы сможете Более подробно ознакомиться с принципами работы и подключения люминесцентных ламп:
Схема для сгоревших ламп дневного света (лд-40)
Схема стандартного «дроссельного» включения ламп дневного света:
Схема для ламп дневного света
В данном случае лампе мощностью 40Вт должен соответствовать балласт (Др) мощностью 40Вт. Стартер S служит для запуска электродугового разряда в газовой трубке лампы.
Если одна из нитей накала лампы сгорит, то лампу невозможно будет запустить. Для неё неообходима нижеследующая схема подключения.
Схема для сгоревших ламп дневного света (лд-40)
Вопросы эксплуатационной надежности ламп дневного света (ЛДС), их «реанимации» неоднократно освещались на страницах журнала «Радио» [1-3]. Для повышения надежности ЛДС в [1, 5] их рекомендуют питать выпрямленным током сети с использованием бесстартерного устройства запуска. Нити накала лампы по прямому назначению не используют, каждая из них шунтирована перемычкой и выполняет функцию электрода, на который подают напряжение, необходимое для включения лампы. По сути, предлагается мгновенное «холодное зажигание» резким повышением напряжения на ЛДС при пуске без предварительного подогрева ее электродов.
Схема для «сгоревших» ламп дневного света
Однако отметим, что зажигание с холодными электродами серийных ЛДС, предназначенных для работы с подогревом нитями накала, является для электродов более тяжелым режимом, чем включение обычным образом [4]. Лампы быстро изнашиваются, и в этом случае, естественно, говорить о наработке среднего гарантированного заводом-изготовителем срока службы ЛДС не представляется возможным.
Другая особенность при работе ЛДС на постоянном токе — возникновение явления катафореза [6] из-за перемещения ионов ртути в лампе к катоду. В результате происходит затемнение лампы со стороны анода, что снижает ее световой поток. Уменьшить влияние такого явления можно, если периодически (один-два раза в месяц), согласно рекомендации в [б], менять полярность подключения ЛДС, а это усложняет эксплуатацию светильников.
К сказанному следует добавить, что зажигание ЛДС с холодными электродами требует повышения напряжения до 400…750 В. Такое напряжение, несмотря на его кратковременность, небезопасно в эксплуатации, особенно в быту.
Поэтому приведенные в [1, 5] советы больше подойдут для ЛДС, которые не могут работать от сети переменного тока, что бывает при обрыве или разрушении нитей накала, потере эмиссии одним из электродов лампы.
Для улучшения общего или местного освещения в [1] предлагается обычный светильник с лампой накаливания дополнить светильником с ЛДС, включенным на питание постоянным током, причем лампа накаливания выполняет функцию балластного резистора. Так, для ламп накаливания мощностью 75 или 100 Вт необходимо установить светильник с ЛДС мощностью 20 Вт, а для 200 или 250 Вт — 80-ваттную ЛДС.
Однако использование лампы накаливания вместо дросселя значительно снижает экономичность такого комбинированного светильника. Лампа накаливания мощностью 100 Вт и напряжением 220…235 В создает световой поток 1000 лм. При работе такой лампы, выполняющей функцию балластного резистора, совместно с ЛДС мощностью 20 Вт напряжение на ней — около 180 В (по результатам измерения), что составляет 80 % от номинального. Мощность, потребляемая лампой накаливания в этом случае, составляет 70 % от номинальной (примерно 70 Вт), а световой поток — всего 45 % (450 лм). При световом потоке ЛДС в 1200 лм общий световой поток комбинированного светильника составит 1650 лм, а потребляемая мощность — 90 Вт. В то же время ЛДС мощностью 30 Вт создает световой поток в 2100 лм, на 27 % больше при меньшей в три раза потребляемой мощности. Очевидно, что намного экономичнее вместо комбинированного светильника использовать обычный с ЛДС мощностью 30 Вт, исключив дополнительные затраты на монтажные работы по соединению светильников между собой.
Проведенный подобным образом анализ работы комбинированного светильника с лампой накаливания 200 Вт и ЛДС мощностью 80 Вт, рабочее напряжение которой 102 В, в отличие от ЛДС — 20 Вт, показывает, что световой поток лампы накаливания составляет всего лишь 5,4 % (280 лм) от светового потока ЛДС (5220 лм), а общая потребляемая мощность — 160 Вт (80 Вт лампа накаливания и 80 Вт ЛДС). По создаваемому световому потоку лампа «двухсотка» в комбинированном светильнике будет эквивалентна лампе накаливания «сороковке» (300 лм). По сути, в таком светильнике лампа накаливания только «греет», потребляя мощность 80 Вт, но не светит (5,4 %), и, естественно, необходимость в таком светильнике отсутствует.
Повысить световой поток комбинированного светильника с ЛДС мощностью 30, 40, 65, 80 Вт можно, если использовать лампы накаливания на напряжение 127 В. Однако в этом случае, при пробое диодов моста, от которого питается ЛДС, лампа накаливания оказывается под напряжением сети 220 В, и ее нить перегорает [1]. Чтобы исключить выход из строя лампы накаливания, ее необходимо включить в цепь постоянного тока последовательно с ЛДС (см. схему). Подобный способ изложен в [б]. При включении выключателя SA1 устройство работает как удвоитель напряжения, выходное напряжение которого приложено к промежутку катод-анод лампы EL2. После зажигания лампы устройство переходит в режим двуполупе-риодного выпрямления с активной нагрузкой. Выпрямленное напряжение примерно одинаково распределено между лампами EL1 и EL2, что справедливо для ЛДС мощностью 30, 40, 65, 80 Вт, имеющих рабочее напряжение в среднем около 100 В.
Для ЛДС мощностью 80 Вт целесообразно использовать две лампы накаливания на 127 В по 60 Вт каждая, включив их параллельно. При таком включении световой поток ламп накаливания будет составлять примерно 24 % от потока ЛДС.
Для ЛДС мощностью 65 Вт наиболее подходящая лампа накаливания на 100 Вт, 127 В. Световой поток этой лампы в комбинированном светильнике примерно 20 % от потока ЛДС. Соответственно для ЛДС мощностью 40 Вт необходима лампа накаливания на 60 Вт, 127 В. Ее световой поток составит 20 % от потока ЛДС. И наконец, для ЛДС мощностью 30 Вт можно применить две лампы накаливания на 127 В по 25 Вт каждая, включив их параллельно. Световой поток этих двух ламп накаливания — около 17 % светового потока ЛДС. Такое увеличение светового потока лампы накаливания в комбинированном светильнике объясняется тем, что они работают при напряжении, близком к номинальному, когда их световой поток приближается к 100 %. В то же время, при напряжении на лампе накаливания около 50 % от номинального, их световой поток составляет всего лишь 6,5 %, а потребляемая мощность — 34 % от номинальной [7].
Для питания ЛДС мощностью 30, 40, 65 Вт лучше всего использовать диодную сборку КЦ404А, которая имеет держатель предохранителя. ЛДС мощностью 80 Вт (рабочий ток 0,86 А) потребует более мощных диодов, например, КД202Р, КД203Г, Д248Б.
Art!P
Вторая жизнь светильников с ЛДС — Конструкции простой сложности — Схемы для начинающих
Люминесцентные лампы, называемые лампами дневного света (далее ЛДС), сегодня активно используются в различных областях промышленности и в быту. Отрицательным моментом при эксплуатации светильников с ЛДС считается периодическое перегорание спирали люминесцентных ламп. В каждой лампе дневного света присутствуют две спирали (с разных концов), необходимые для зажигания люминофора внутри лампы в момент включения. Причем, если хоть одна из спиралей лампы перегорит, включить ЛДС с помощью классической схемы запуска (содержащей дроссель, конденсатор и стартер) уже невозможно. В такой ситуации многие покупают новую лампу. Однако когда в помещении установлены несколько светильников (например, в производственных цехах, многоквартирных домах на лестничных клетках и в других сходных случаях), очевидно, что за годы эксплуатации выходит из строя и скапливается без дела множество люминесцентных ламп с перегоревшими спиралями.
Причем, как видно их электрической схемы, спирали лампы (с ее торцов) «закорочены», то есть, соединены, поэтому не имеет значения, какие применяются лампы — новые или б/у, с нормальными спиралями или с перегоревшими. Эта схема отличается от опубликованных многочисленных схем электронных устройств в сторону простоты и надежности. Главное, чтобы мощность ЛДС не превышала 80 Вт, потому что для более мощных ламп требуется применение соответствующих диодов (входящих в выпрямительный мост VD1). В данной схеме допустимо применение диодов с обратным напряжением не менее 300 В, например, КД105Б — КД105Г, Д112-16, КД2996В, КД2997, КД243Г, КД202Е и аналогичных. При мощности ЛДС 80 Вт рекомендую применять диоды типа Д231, Д242 и установить их на теплоотводы с площадью охлаждения не менее 50 см2 каждый. Устройство прошло технические испытания в течение десяти суток непрерывной работы с ЛДС Philips мощностью 40 Вт. Дроссель L1 штатный для светильников с ЛДС мощностью до 80 Вт, то есть любой из типового ряда ВТА. Если предполагается применять ЛДС с меньшей мощностью, например, до 40 Вт, допустимо использовать другой дроссель, соответственно с обозначением на его корпусе ВТА 36 W 220 V. Неполярный конденсатор СЗ служит для купирования помех по питанию.
Его тип может быть любым, например, К73-24 (или зарубежный аналог KWC) на рабочее напряжение не ниже 300 В. Неполярные конденсаторы С1, С2 — однотипные, например, из серии K22-У или аналогичные, на рабочее напряжение 160 В и более. Они придают устройству большую надежность и долговечность, препятствуя помехам в моменты поджига люминофора в ЛДС, однако эти два элемента можно без последствий из схемы исключить. В качестве ЛДС применяются отечественные или изготовленные за рубежом лампы (например, фирмы Philips) соответствующего размера и мощностью от 20 до 80 Вт. Предлагаемая схема рассчитана на включение одной из таких ламп, ее нельзя применять для включения нескольких ламп. Таким образом, если стоит конкретная задача — например, запустить освещение на производственном участке большой площади с использованием нескольких ЛДС, для каждой из них требуется собрать отдельную схему. Включать в рекомендуемой схеме ЛДС параллельно нельзя.
Практическое применение (переделка) промышленных светильников с ЛДС
Еще один аспект применения ЛДС в том, что часто радиолюбитель — конструктор пытается переделать уже готовый промышленный светильник под свои нужды. Например, если требуется оставить включенной только одну ЛДС в светильнике, где конструктивно предусмотрены две однотипные ЛДС. На практике часто требуется реконструировать светильник с ЛДС для аквариума. Дело в том, что для отдельно взятого аквариума с водорослями требуется строго регламентированное количество освещение (сила света) в течение дня. Если установлен светильник с ЛДС большой мощности (более 20 Вт на аквариум объемом до 100 л), вода в аквариуме мутнеет и «цветет». Большой радости аквариумисту и радиолюбителю такое положение вещей доставить не может. Предлагаемые сегодня в магазинах и на рынках светильники с ЛДС для аквариумов (рассчитаны на мощность 10…30 Вт), как правило, одни и те же. А объем аквариумов и их насыщенность «цветущими травами» у разных аквариумистов разнятся, поэтому часто требуется вносить коррективы в штатную схему подключения ЛДС. Так, например, в этой связи встает вопрос — как эффективно подключить одну ЛДС вместо двух, предусмотренных в штатном варианте? Это не сложно и под силу даже начинающему радиолюбителю.
На рис. 2 представлена классическая электрическая схема включения ЛДС с двумя лампами для аквариума.
Как известно, ЛДС включаются не параллельно друг другу, как принято, например, включать в осветительную сеть 220 В лампы накаливания, а для каждой ЛДС предусмотрен отдельный запускающий элемент — стартер. Сопротивление одной спирали ЛДС мощностью 20 Вт составляет 4 Ома. Если исключить одну лампу, чтобы уменьшить насыщенность освещения, решить проблему обыкновенным шунтированием (резистором сопротивлением 3…5 Ом) спирали второй лампы с последующим изъятием ЛДС из светильника не удается. Оставшаяся в светильнике лампа начинает моргать, чем выводит пользователя из состояния душевного равновесия. Чтобы включить в таком светильнике одну ЛДС вместо двух предусмотренных, применяют электрическую схему, показанную на рис. 3.
Все электрические параметры элементов и рекомендации относительно эффективного использования устройства аналогичны описаниям в предыдущих разделах.
Почему «моргает» ЛДС?
Исправная лампа дневного света после подачи напряжения на схему запуска один-два раза мигнет (внутри лампы происходит поджиг люминофора) и начинает светиться ровным бело-молочным светом (поэтому такие лампы и прозвали лампами «дневного» света). Если лампа после включения продолжает моргать (мигает) — такое может случиться как сразу после подачи питания на схему, так и в рабочем режиме свечения (после ровного света вдруг начинаются мигания, продолжающиеся, как правило, до тех пор, пока не выключат питание) — зто указывает на неисправность стартера, схемы преобразователя переменного напряжения для ЛДС или говорит об изменении сопротивления нагрузки (мощности ЛДС). Об этом ниже. Съемные элементы конструкции светильников (находящиеся в колодках), такие как стартер и сама лампа легко заменяются новыми (другими). Неполярный конденсатор включен в схеме в сеть 220 В и препятствует как появлению помех от других устройств, включенных в осветительную сеть в данном контуре, так и для локализации электрических помех, производимых устройством запуска ЛДС. Сглаживающий электрические помехи конденсатор редко выходит из строя, и его неисправность, как правило, выражается лишь в потере емкости в небольших пределах. Назвать потерю емкости конденсатора на 10…20% относительно номинальной серьезной неисправностью нельзя, поэтому такой конденсатор может пригодиться радиолюбителю в дальнейших экспериментах. Рассмотрим другие элементы, конструктивно входящие в классическую схему запуска ЛДС и их типичные неисправности.
Дроссель
Дроссель, находящийся в устройстве запуска ЛДС, как правило, не выходит из строя при правильной эксплуатации светильника. Его типичные неисправности могут проявить себя в «обрыве» (легко определяется прозвонкой омметром) — тогда ЛДС вообще не зажжется, или в межвитковом замыкании — тогда дроссель будет нагреваться, оплавлять лакокрасочное покрытие и «гудеть». Таким образом, установить неисправный элемент в схеме запуска ЛДС даже без применения паяльника не составит труда.
Стартер
Стартер представляет собой электровакуумный разрядник, нормально замкнутые контакты, которого размыкаются под воздействием протекающего через них переменного тока определенной силы. Стартеры рассчитаны на определенный ток в цепи и соответственно мощность ЛДС (этот параметр мощности ЛДС указан на корпусе — бочонке стартера, как и параметр напряжения — 220 В) Поэтому применять стартеры, рассчитанные на работу с ЛДС мощностью 25 Вт нельзя (неэффективно) с более мощной ЛДС, например, 80 Вт — такое устройство нормально работать не будет. Вот почему ЛДС в светильник мигают при замене штатных ламп на другие ЛДС с меньшей или больше мощностью. В первый момент времени контакты стартера замкнуты и в цепи течет ток, заставляя разогреваться внутренние спирали ЛДС. После того как ток стабилизировался (это происходит после поджига люминофора внутри лампы), между контактам стартера возникает большое сопротивление, и также течет ток, только меньшей силы. Внутри бочонка стартера параллельно контактам электровакуумного выключателя установлен неполярный конденсатор емкость 0,01 мкФ. Он защищает включатель от перегрузки и искрения в моменты коммутации в цепи. Если использовать данный включатель (стартер) в качестве неонового индикатора, этот конденсатор удаляют.
Неоновый газ в разряднике при приложении переменного напряжения (когда сопротивление между контактами велико) светится розовым светом. Этот эффект свечения можно использовать в других радиолюбительских конструкциях. Электровакуумный включатель стартера может выполнять роль неоновой индикаторной лампы, если его включить в осветительную сеть 220 В последовательно с ограничивающим ток резистором сопротивлением 0,1…1 мОм.
Лампа
Классическая ЛДС имеет две спирали, расположенные с торцов лампы, к которым в момент включения подводится напряжение для запуска. После прогрева спиралей (как правило, 1 …2 сек) в лампе поджигается люминофор и ЛДС светится. После стабилизации тока (зажигания люминофора) напряжение, приложенное к спиралям лампы, уменьшается, обеспечивая небольшое потребление мощности в совокупности с хорошими показателями освещенности. Если одна или обе спирали ЛДС перегорят, такая лампа работает не стабильно (мигает или не светится), полноценного поджига люминофора не происходит.
Радиолюбитель №4 2007г стр. 15
маркировка и устройство. Как выбрать стартер для ламп дневного света? Подключение через лампочку накаливания
На данный момент потребитель еще не оценил все достоинства усовершенствованного пускового механизма. Самая главная причина – это высокий уровень цен на оборудование этого типа. Ознакомиться с датчиком движения для включения света и советами как выбрать .
Весь принцип работы люминесцентных ламп с электронным балластом сводится к тому, что электрический ток проходит через выпрямитель, поступает на буферную зону конденсатора. После напряжение поступает на инвертор
Построение заподлицой установки особенно подходит для традиционных зданий, с кирпичными стенами, где ковка канавок не представляет трудностей. В настоящее время преобладает то, что предпочтительно изготавливать гипсокартон в сочетании со скрытыми фитингами. Поверхностный монтаж.
Изолированные провода проходят по верхней части стены, на поверхности штукатурки. Этот тип установки в основном используется во влажных помещениях, таких как: погреб, гараж, прачечная, гидрофор или вне здания. Кабели крепятся к земле с помощью металлических лент и гвоздей или со специальными ручками. Дюбели или ручки осаждаются в стенах после штукатурки и сушки штукатурки. Перед окраской помещений устанавливаются провода и аксессуары. Поверхностная установка также может быть выполнена на полах.
Микросхема срабатывает при уровне напряжения в 5,5 В. После того как напряжение в системе достигает 12 В, система входит в следующую фазу. Происходит предварительный нагрев. ЭБ нужен для того, чтобы не допустить неправильного срабатывания лампы.
В конце активируется упреждающее управление, регулирующее частоту переключения полумоста. ЭБ способствует поддержанию стабильного положения мощностного показателя.
Каждый электрический проводник состоит из проводящего элемента, изоляции. Гид — медь. Изоляция выполнена из поливинила или резины. Кабели имеют нормализованные поперечные сечения. В жилых помещениях используются двух — или трехпроводные медные провода с поликристаллической изоляцией 1 и 1, 5 мм. Выбор площади поперечного сечения зависит, в частности, от ожидаемого потребления энергии.
Электрическая установка в односемейном доме должна быть оборудована приборами для измерения потребления электроэнергии. Измерительная система состоит из одного или двух тарифного счетчика. Однотарифный счетчик устанавливается в случае круглосуточной зарядки электроэнергии по той же цене. Счетчик двойных тарифов устанавливается, когда ночная энергия дешевле. Тип измерительной системы определяется условиями технического подключения.
Устройство
Непосредственно на плате ЭПРА располагается:
- Фильтр, который предотвращает распространение электромагнитных помех.
- Выпрямитель – преобразовывает постоянный электрический ток в переменный.
- Сглаживающий фильтр.
- Коррекция коэффициента мощности.
- Полумостной инвертор.
- Защита от перепадов напряжения.
- Дроссель.
Виды и характеристики
На данный момент можно использовать следующие варианты балласта для люминесцентных ламп:
Описание стартера «Евросвет»
Благодаря его использованию выделяются осветительные, промышленные и специальные системы освещения. Из-за условий эксплуатации выделяются установки в сухих, влажных, влажных, коррозионных, легковоспламеняющихся или взрывоопасных средах. Электропроводка и монтажное оборудование должны быть адаптированы к типу установки.
Стандартизованные провода, используемые в установках низкого напряжения, выполнены из меди или алюминия в виде кабелей или проводов. Благодаря тому, как эти кабели сделаны, оголенный провод, волокнистая ткань, изоляция, куртка, кабель и кабели дифференцированы. Проводники могут быть установлены на поверхности, под штукатуркой или штукатуркой.
Схемы
Схемы включения люминесцентных ламп с электронных балластов можно разделить на 4 фазы:
В местах, где кабели разветвлены, распределительные коробки. В дополнение к отраслевым банкам, так называемым. Через банки, которые позволяют проверять состояние проводов или, возможно, заменять их. Промышленные установки обычно производятся на штукатурках в бронированных или металлических трубах. В жилых помещениях установка находится под штукатуркой.
Как проверить электронный балласт для люминесцентных ламп?
Во влажных помещениях с агрессивными парами взрывозащищенные помещения должны быть установлены в специально закрытых бронированных трубах. В дополнение к проводам и жестянам, установка включает в себя установочные принадлежности: разъемы, розетки, штепсельные вилки и предохранители.
- Включение
- Предварительный нагрев
- Поджиг
- Горение
Также имеется еще один вариант баланса для включения люминесцентных ламп — индуктивный балласт. Его работа основана на электромагнитной индукции.
Коммутаторы — это все виды коммутаторов, коммутаторы гостиниц, двухпроводные коммутаторы, лестничные выключатели и переключатели. Кросс-коннекторы используются для управления одним приемником из минимум двух мест. Выключатели для затвора используются для управления жалюзи и рольставнями с помощью двух верхних клавиш или ручки. Для временного подключения электрической цепи подключите колокол. Универсальные переключатели имеют три терминала и могут быть установлены, например, как лестницы.
Подключение через дроссель
В плане строительства выделяются каналы и стержни. В случае цепей с большой нагрузкой используются многоуровневые переключатели. В комнатах, таких как кухни и ванные комнаты, используются водонепроницаемые соединители. Для подключения к сети одно — и трехфазных переносных приемников используются разъемы и вилки. Доступен во многих вариантах и линиях проектирования. Отдельные двойные розетки используются в жилых помещениях; с землей или без нее; с защитой от вставки случайных объектов, механизм выталкивает вилку из розетки, сетевой фильтр.
Подключение
Инструкция по подключению:
- Подготовить ЭБ и лампу.
- Вынуть старую начинку из светильника. Крепят коробку ЭБ.
- С одной стороны, ЭБ выполняют подключение к сети – два провода.
- На выходе от ЭБ провода подключаю к двум полюсам лампы.
- Подключают устройство в розетку.
Включение двух люминесцентных ламп через балласт предполагает параллельное включение в цепь. Только так все осветительные элементы будут получать достаточное напряжение для равномерной работы устройств.
Номера, появляющиеся в письмах, указывают на защиту окружающей среды, обеспечиваемую корпусом: первая цифра относится к твердым веществам, а вторая относится к воде. Жилые здания все чаще оснащены трехфазными розетками, которые используются для подключения электрических плит и других приборов с большими требованиями к мощности.
Поэтому, в случае незажженной лампы, нужно
Часто вы можете найти сокеты в каналах потолочного, субпольного или углового монтажа; Это упрощает установку и возможные обновления. Центральная система пылесоса, которая также включает в себя всасывающие сидения, становится все более популярной. Они используются для подключения линии всасывания, которая удаляет пыль и грязь в контейнер в центральном пылесосе. Некоторые производители также предлагают центральные пылесосы для электрических розетки.
Смотрите видео-ролик об электронном балласте для люминесцентных ламп:
Как проверить электронный балласт для люминесцентных ламп?
На что же обращать внимание при покупке
В офисах, в дополнение к вышеупомянутым разъемам, сокеты для передачи данных также используются для подключения периферийных устройств, таких как телефон и компьютер. Электрический шок возникает, когда человеческий организм с оголенными проводами или корпусами приемника касается, где произошло напряжение из-за повреждения изоляции землей.
Для снижения риска получения травмы предусмотрена дополнительная защита от ударов. Прежде всего, они требуют электрооборудования в металлическом корпусе. В домах чаще всего используются следующие виды защиты. Сброс — металлический корпус приемника подключен к нейтральному проводнику электрической системы, заземление — металлический корпус приемника подключен к так называемому заземляющему электроду через металлический заземляющий проводник, защитные выключатели — остаточный ток. Выбор соответствующего метода определяется условиями технического подключения.
Чтобы выполнить проверку электронного баланса для люминесцентных ламп необходимо будет использовать специализированное оборудование. Если полученные показатели при измерении будут находиться в пределах нормы, то можно будет говорить о том, что оборудование работает исправно. Читайте .
На представленном ниже видео показано как можно заменить электронный балласт:
Низковольтные установки используют защитные устройства, чаще всего размещенные в модульных корпусах. Залог делится на. Рекомендации по использованию этого метода защиты включают в себя класс защиты устройства, являющегося потенциальным источником опасности.
Распределительные устройства используются для распределения электрических цепей. Это шкафы, в которых установлены различные типы приборов: счетчики электроэнергии, цепи управления, контакторы, реле и т.д. размеры ящиков стандартизированы, чтобы обеспечить распределение всей панели с необходимого количества компонентов.
Неисправности и ремонт
Само собой, что любое оборудование рано или поздно может поломаться, или прийти в неисправность. Другими словами, любой прибор порой требует ремонта и дополнительного технического обслуживания.
Преимуществом коробчатых переключателей является четкость их состава и небольшое количество занимаемого пространства. Современные типы распределительных щитов предназначены для установки модульного оборудования на стандартную 35-мм шину. Преимущество модульных корпусов заключается в простоте сборки в результате стандартизованных размеров и простой сборки в распределительном устройстве.
Требуется ли здание для защиты от молнии, зависит от тяжести удара молнии. Они определяются индексом опасности молнии, в зависимости от таких факторов, как тип здания, его размер и конструкция, оборудование, окружающая среда, тип местности, регион Польши.
Подключение старых перегоревших люминесцентных ламп дневного света.
Старые люминесцентные лампы работают дольше лишь теоретически, и зачастую это бутафория,
замараха производителей! На самом же деле Люминесцентные лампы дневного света (ЛДС) очень сильно чувствительны как к перепадам напряжения, так и к климатическим условиям и температурным факторам, а ещё не дай Бог, где то коротит цепь, так лампочка прослужит совсем недолго (всё это из
общественного опыта). И есть ещё одно «но», это если выключатель прерывает цепь не фазы, а «нуля», а фаза не прерывается, то Люминесцентка,
помимо того, что начинает немого подмигивать, при выключенном выключателе, так и
через неделю, другую, гаснет навсегда! И ещё один факт. Вольфрам (в нитях накала) сейчас не тот (в
смысле чистоты), который просматривается со временем на колбе в виде
металлического испарения — со
всеми вытекающими отсюда последствиями! Таким образом срок службы старых люминесцентных ламп дневного света (ЛДС)
ограничен преждевременным перегоранием нитей накала. А найти сейчас,
люминесцентные светильники старого образца, особенно если они подобраны для
особых случаев (например: подсветки аквариума) или устанавливать новый
светильник — себе дороже.
Однако стоит помнить, что он может потребовать страховую компанию. Наружная молниезащита. Он направлен на то, чтобы взять ток от разряда молнии и привести его на землю таким образом, чтобы обеспечить безопасность людей, здания и электрического и электронного оборудования. Ток молнии должен быть распределен как можно больше проводов. В дополнение к специальной системе молниезащиты также могут использоваться существующие проводящие элементы здания.
Внешняя установка состоит из. Молниевые токи, которые расположены в самых высоких местах крыши и соединены со всеми металлическими предметами; Каналы могут быть выполнены из проволочных или металлических плоских стержней, или вы можете использовать кровельные материалы, дренаж и заземление для соединения заземления и заземления. Выпускные каналы располагаются на внешних стенах здания вдали от окон и дверей и подключаются к заземляющим проводникам через клеммы управления, заземляющие электроды для распределения тока в земле; Могут использоваться металлические конструкционные элементы. Внутренняя система молниезащиты.
Проще говоря:
»
Качество ожидает желать
лучшего!
»
, впрочем как правило
гарантированный срок эксплуатации соблюдается! В итоге хочется чтобы
реализовалась: «вторая жизнь люминесцентной лампы» —
«питание ламп дневного света со сгоревшей нитью». По этим причинам становятся
актуальными довольно «бородатые» схемы включения
сгоревших люминесцентных ламп дневного света (лдс) предлагаемые автором. В этих
схемах допустимо использовать в том числе
перегоревших, то есть неисправных (см. далее) ламп. Проще говоря: запуск
перегоревших люминесцентных ламп.
Предотвращает создание так называемых перенапряжений путем эквипотенциального соединения между всеми установками в здании. Он используется независимо от того, оснащено ли здание наружной системой молнии. Он заключается в установке в компенсационных соединениях и разрядниках здания, которые захватывают перенапряжение и направляют его непосредственно на заземляющий электрод.
Ограничитель первой ступени используется, когда есть возможность проникновения молниевого тока во внутреннюю установку: в зданиях с системой молниезащиты или с электрическим подключением. Ограничители устанавливаются в разъеме или в главном распределительном щите здания. Вторичные упоры установлены на главном распределительном устройстве. Концы третьего уровня устанавливаются непосредственно перед защищенными устройствами.
Схемы включения перегоревшей люминесцентной лампы.
Подключение через лампочку накаливания.
Подключение старых перегоревших люминесцентных ламп дневного света через лампочку накаливания. Проще говоря: перегоревшая лампа люминесцентная запуск без дросселя, бездроссельное подключение лампы дневного света
бездроссельный запуск ламп дневного света
Источники света и осветительные приборы
Характеристики источников света — это мощность и напряжение. Тип лампы и ее мощность должны быть адаптированы к осветительной арматуре. В лампах накаливания свет вырабатывается путем нагревания до высокотемпературной вольфрамовой проволоки, помещенной внутри стеклянной колбы, заполненной вакуумом или инертным газом. Характерной особенностью ламп накаливания является чувствительность к колебаниям напряжения. Лампочки имеют разные формы и цвета: прозрачные, матовые, цветные. Прозрачные лампочки в основном предназначены для закрытых светильников, где источник света невидим.
Рис № 17. Подключение старых перегоревших люминесцентных ламп дневного света через лампочку накаливания и удвоитель напряжения.
Таким образом получаем электрическую схему: «Подключение люминесцентной лампы, с перегоревшими нитями накала через умножитель напряжения». В общем виде: «Схема без дроссельного управления люминесцентной лампой». В упрощённом виде, используется принцип зажигания перегоревших люминесцентных лампкак источников газоразрядного света низкой температуры . Электроны движутся в колбе лампы (HL2 ) от катода (HL2.K ) к аноду (HL2.A ), вызывая низкотемпературную плазму.Для облегчения включения лампы на один конец её баллона наклеивают кольцевой ободок из фольги- «стартовый анод» (HL2.AS ), соединенный проводником с выводами анода (HL2.A ). Или намотав немного тонкой проволоки на колбу. При этом для исключения поражения электричеством «стартовый анод» следует изолировать, например намотав поверх изоляционную ленту.
Матовые лампы также могут быть установлены в светильниках с видимыми источниками света. Цветные лампы в основном используются в декоративных целях. В дополнение к обычным размерам ламп и размерам ламп, доступных на рынке, доступны и другие типы. Маленькие луковицы могут быть свечи или сферические, прозрачные, матовые или цветные; Они особенно подходят для декоративного освещения. Линейные лампы похожи на люминесцентные лампы; Благодаря большой площади поверхности они подходят для установки в непокрытых светильниках.
Они устанавливаются в основном в ванных комнатах и в качестве освещения для настенных шкафов. Так называемый. байонетные колпачки. Лампы с большой лампой имеют декоративный эффект. Криптоновые луковицы имеют небольшие пузырьки, заполненные криптоном — сферические, свечи или грибы. Они дают мягкий свет. Лампочки с зеркальным куполом имеют верхнюю часть, покрытую золотым или серебряным покрытием, отражающим световые лучи к стеблю; предназначены для светильников с отражателями. В луковицах с зеркальным отражателем покрытие покрыто пузырьковой шейкой, так что эти луковицы дают интенсивный луч света направления; Они подходят для использования в тех областях, где требуется сильное освещение на месте, например, над столом или столешницей.
Схема состоит из стандартного двойного диодно-конденсаторного умножителя напряжения (VD1 , VD2 , С1 , С2 ), обеспечивающего стабильный газовый разряд в люминесцентной лампе (HL2 ) и балансного сопротивления (HL1 ). Для включения лампы применяется выключатель (S1 ).
В качестве диодов VD1 и VD2 , можно использовать диоды Д237Б , КД105Б и другие, с «обратным» напряжением 400 В . С1 и С2 любые электролитические конденсаторы 1…2 мкФ с рабочим напряжением 400 В . HL1 лампа накаливания ½…2 мощности люминесцентной лампы (HL2 ), 220 В. Подбирается эмпирически, при большей мощности этой лампы, люминесцентная лампа (HL2 ) горит ярче, при меньшей тусклее. Оптимальным считается: мощность лампы (HL1 ) должна равняться мощности люминесцентной лампы (HL2 ). Рекомендуется использовать лампу «от холодильника» или “миньон”.
Предлагаемая схема такого питания отличается:
Необходимо, чтобы лампа накаливания (HL1
)
была включена в фазовый провод сети (Фаза
+
), а не к нулевой (Фаза
0
). Поэтому в тех случаях когда зажигание люминесцентной лампы
происходит неуверенно, проверьте правильность подключения.
Для уменьшения потерь в токопроводящих механических контактах и исключения коррозии желательно контакты люминесцентной лампы обработать специальными покрытиями, например «Графитовой токопроводящей смазкой».
Первоначально рекомендуется в качестве катода (HL2.K ) использовать «не перегоревшую нить», а в качестве анода (HL2.A ) «перегоревшую», хотя это не столь принципиально! Следует отметить: люминесцентная (HL2 ) лампа в силу своих конструктивных особенностей не предназначена для питания постоянным током. Поэтому анод и катод необходимо периодически менять местами (см. ).
Подключение через дроссель.
Подключение старых перегоревших люминесцентных ламп дневного света через дроссель.
Рис № 18. Подключение старых перегоревших люминесцентных ламп дневного света через дроссель и умножитель напряжения.
Отличие от предыдущей схемы использование дросселя (L1
),
вместо шунтирующего сопротивления (Рис. № 17, балансная «лампа» HL1
)
.
Основным недостатком этой схемы является эмпирический подбор дросселя (L1
),
с учётом многих факторов. Достоинством: практически «вечная» долговечность
осветителя, балансная «лампа» не перегорает и следовательно её не надо менять
(через приблизительно 5..8 лет).
После 5…10 лет эксплуатации анод и катод рекомендуется поменять местами,
естественно «стартовый анод»
(HL2.AS
) следует «переместить на другое место»
— при этом очень аккуратно. Для восстановления изменяют полярность, перевернув лампу.
Далее через какое-то время, обычно 4…8 лет, проверяют светимость (яркость)
лампы и если необходимо опять анод и катод меняют местами и так далее. В силу
осадка ртути на внутренней части колбы и ряда других эффектов, не
затронутых автором, работоспособность
обычно ограничена 20…50 годами
непрерывной
эксплуатации по аналогии с неоновыми лампами (несколько упрощено автором). Для упрощения обслуживания
люминесцентной лампы можно установить переключатель, имитирующий её
переподключение, чтобы её не снимать и
повторно не устанавливать.
В качестве примера.
Автор реализовал такую схему для подсветки общественного аквариума в середине 70-х годов прошлого века «из того, что было «. К своему удивлению недавно узнал, что этот аквариум с моей подсветкой радует людей до сих пор, около 40 лет! Налицо все признаки энергосбережения освещения, уменьшения времени обслуживания и расходовании зап. частей — смотри далее. Впрочем справедливости ради, балансная «лампа» (Рис. № 17, HL1 ), была заменена на дроссель (Рис. № 18, L1 ).
Это решение должно заинтересовать прежде всего мелких
предпринимателей! Создать промышленный гибридный электронный блок управления
элементарно, при этом балластный резистор (HL1
,
Рис № 17)
может быть электронным. А переход в
производстве и эксплуатации этих светильников, для подвальных и подземных
помещений или освещении туннелей и объектов метрополитена и т.д., даст наряду с
сокращением электропотребления, увеличение сроков безобслуживаемой и
безаварийной эксплуатации и следовательно снижению производственных издержек. В принципе можно
использовать вторь сырьё (перегоревшие лампы) и практически без обслуживании в
течении десятка лет! Конечно создание таких гибридных схем и внедрение в
действующие светильники под силу только мелким предпринимателям естественно с
поддержкой государства.
(PDF) Электронный балласт с высоким коэффициентом мощности с одним выключателем для компактных люминесцентных ламп.
IEEE
Proof
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 43, НЕТ. № 6, НОЯБРЬ/ДЕКАБРЬ 2007 г. 1
Одноступенчатый однопереключатель высокого коэффициента мощности
Электронный балласт для люминесцентных ламп
1
2
Ying-Chun Chuang and Hung-Liang Cheng3 90—0 представляет эффективную, малогабаритную и экономичную4
схему коррекции коэффициента мощности (PFC) с одним переключателем5
для высокочастотных электронных балластов.Топология схемы orig-6
основана на интеграции повышающе-понижающего преобразователя PFC и электронного балласта класса E7
. Только один активный выключатель питания используется только обоими силовыми каскадами com-8
для снижения стоимости активных переключателей9
и цепей управления. Активный переключатель управляется широтно-импульсной20
модуляцией при фиксированной частоте переключения и постоянной скважности11
цикла. Электронный балласт может достигать коэффициента мощности, близкого к единице,12
за счет работы повышающе-понижающего преобразователя в режиме прерывистой проводимости.Благодаря тщательно разработанным параметрам схемы, активный14
выключатель питания может работать при нулевом напряжении, что обеспечивает15
высокую эффективность схемы. Прототип схемы, предназначенной для компактной люминесцентной лампы PL-27-W16
, построен и протестирован для проверки предсказаний ретика theo-17
. Удовлетворительные характеристики получены на основе18
экспериментальных результатов.19
Ключевые слова — электронный балласт, люминесцентная лампа, коэффициент мощности20
коррекция (PFC). 21
I. ВВЕДЕНИЕ22
Люминесцентные лампы находят все более широкое применение23
в жилых, промышленных и торговых приложениях-24
. Однако для этих ламп требуется высокое напряжение зажигания25
для пускового и ограничивающего тока после зажигания, поскольку они26
имеют отрицательную характеристику добавочного импеданса. Для решения этих задач использовались электромагнитные балласты Tradi-27
, работающие на частоте сети,28
.Несмотря на свою низкую29
стоимость, эти балласты имеют вибрацию, большой размер, большой вес,30
и гул. Поэтому высокочастотные электронные балласты для флуоресцентных ламп флю-31
получили большое внимание в последние годы32
благодаря их достоинствам легкого веса, небольших размеров, высокой43
световой отдачи и длительного срока службы лампы. Большинство электронных пускорегулирующих аппаратов34
реализованы с инверторами с резонансной нагрузкой, поскольку они могут обеспечить35
соответствующее напряжение зажигания и, следовательно, стабильный ток лампы36
с низким коэффициентом амплитуды (CF) для люминесцентных ламп. Использование37
резонансных инверторов класса E в качестве балластов люминесцентных ламп дает38
несколько преимуществ, таких как меньшее количество компонентов, низкая стоимость и39
документ ICPSD-06-14, представленный в 2006 г. —
mercial Power Systems Technical Conference, Detroit, MI, 30 апреля – 3 мая,
и одобрено для публикации в IEEE TRANSACTIONS ON INDUSTRY
APPLICATIONS Комитетом по энергетическим системам IEEE Industry Applications Society.Рукопись представлена на рецензию 2 мая 2006 г. и выпущена
для публикации 30 апреля 2007 г.
Ю.-К. Чуанг работает на кафедре электротехники Университета Кунь Шань
, Тайнань 710, Тайвань, Китайская республика. (электронная почта: [email protected]).
Х.-Л. Ченг работает на кафедре электротехники Университета И-Шоу
, Гаосюн 840, Тайвань, Китайская республика. (электронная почта: [email protected]).
Цветные версии одного или нескольких рисунков в этом документе доступны онлайн
по адресу http://ieeexplore. ieee.org.
Цифровой идентификатор объекта 10.1109/TIA.2007.8
высокая плотность мощности. Эти особенности, в дополнение к тому факту, что 40
резонансный инвертор класса E использует только один активный переключатель мощности, 41
приводят к тому, что электронный балласт имеет очень простую структуру, низкие 42
коммутационные потери, небольшой объем и малый вес. масса. Кроме того, 43
поскольку коммутации в переключателе резонансного инвертора 44
выполняются при нулевом напряжении, коммутационные потери электронного балласта очень малы, что приводит к очень высокому КПД.46
Чтобы получить компактный электронный балласт и устранить 47
нежелательные характеристики, такие как звуковой шум, мерцание и 48
стробоскопические эффекты, необходимо повысить рабочую частоту. 49
В случае люминесцентной лампы, работающей на высокой частоте, 50
световая отдача увеличивается примерно на 20% [1], [2], что 51
снижает энергопотребление системы. Обычно 52
высокочастотные электронные балласты при потреблении мощности 53
от источника переменного напряжения часто используют диодный мостовой выпрямитель с объемным электролитическим конденсатором для преобразования переменного напряжения 55
к сглаженному напряжению в звене постоянного тока для высокочастотных электронных 56
балластов.Такая схема выпрямителя неизбежно потребляет входной ток 57
узких импульсов, который известен очень низким коэффициентом мощности (PF) и серьезными гармоническими искажениями. Коэффициент мощности обычно 59
меньше 0,6, а общее гармоническое искажение (THD) может 60
превышать 100%. Широкое использование высокочастотных 61
электронных балластов для люминесцентных ламп в осветительных приборах 62
является значительным источником загрязнения электроэнергии.Однако преимущества 63
высокого коэффициента мощности, включая снижение среднеквадратичного значения линейного тока и 64
гармонических искажений линейного тока, могут привести к тому, что линия электроснабжения будет 65
более эффективно использоваться и меньше загрязняться. Поэтому в конструкции высокочастотного электронного балласта 67
становится необходимой схема фильтра 66
. 68
Общее решение для снижения гармоник входного тока 69
и улучшения коэффициента мощности источника переменного тока заключается в добавлении 70
второй ступени обработки мощности, называемой коррекцией коэффициента мощности (PFC) 71
стадия.Обычно, используя преобразователь постоянного тока 72
прерывистого тока в постоянный, эти каскады заставляют линейный ток естественным образом следовать синусоидальной форме волны линейного напряжения [3]. Однако подход с двумя каскадами увеличивает стоимость, помимо снижения надежности и эффективности, поскольку мощность обрабатывается дважды. Эта проблема 76
может быть решена путем интеграции схемы ККМ в каскад резонансно-инверторного 77
[4]. За счет совместного использования переключателя 78
активной мощности и схемы управления количество компонентов может быть эффективно уменьшено 79
. Тем не менее, в соответствии с работой каскада 80
нагрузочно-резонансного инвертора переключатель активной мощности должен 81
переключаться на требуемую частоту с заданным рабочим циклом. 82
При этом ограничении предпочтительнее схема ККМ с повышающе-понижающей топологией 83
, поскольку высокий коэффициент мощности для ККМ с повышающей топологией 84
приводит к чрезмерно высокому напряжению в звене постоянного тока. 85
Резонансные инверторы нагрузки считаются наиболее эффективным способом миниатюризации электронных балластов.Они 87
0093-9994/$25.00 © 2007 IEEE
Пусковые переключатели для люминесцентных ламп Патенты и патентные заявки (класс 200/5F)
Номер патента: 4870229
Abstract: Переключающее устройство, включающее в себя первый переключатель, узел первой кнопки, имеющий нажимную поверхность и выполненный с возможностью попеременно включать и выключать первый переключатель в ответ на усилие нажатия, первую пружину для поджима первой кнопки узел в направлении, противоположном нажимной силе, запорное устройство, включающее в себя пружину и кулачок для блокировки указанного первого узла кнопки в нажатом положении, второй переключатель, второй узел кнопки, имеющий нажимную поверхность и расположенный включение второго переключателя в ответ на усилие нажатия, вторую пружину для поджимания узла второй кнопки в направлении, противоположном второму усилию нажатия, и выступ для предотвращения разблокировки запорного устройства в ответ на непреднамеренное усилие нажатия .
Тип: Грант
Подано: 28 ноября 1988 г.
Дата патента: 26 сентября 1989 г.
Правопреемник: Кабусики Кайша Токай Рика Дэнки Сейсакусё
изобретателей: Тосихиро Кавасэ, Сачия Сано
Устранение неполадок в освещении — электрика 101
Поместите наконечник детектора напряжения Fluke® рядом с каждым концом каждой лампочки в приспособлении с включенным питанием. Если тестер загорается, балласт, вероятно, исправен. Тестер Fluke® превосходно справляется с этой проверкой балласта.
В домашнем хозяйстве или офисе, когда не работает одна лампочка, обычно требуется замена лампочки. Иногда это не работает. Если лампочка, замененная на заведомо исправную, по-прежнему не работает, проверьте возможные причины в приведенном ниже списке в порядке вероятности.
- Неисправный балласт (только люминесцентные лампы)
- Неисправная или сработавшая розетка GFCI или автоматический выключатель
- Неисправный выключатель света
- Ослабленный монтаж провода, неплотное соединение с выключателем, осветительным прибором или розеткой внутри электрической коробки
- Неисправный светильник
Устранение неполадок с люминесцентными лампами
Устранить неполадки с люминесцентными лампами может быть очень сложно, поскольку, в отличие от компактных люминесцентных ламп, они имеют отдельный балласт. Если люминесцентные лампы не загораются, возможно, неисправна лампа или балласт. Если в другом светильнике есть заведомо исправные лампы того же диаметра, установите их в тот светильник, который не загорается. Если он по-прежнему не загорается, то, скорее всего, неисправен балласт, либо на светильник не подается питание. Менее вероятно, что в креплении может быть плохой контакт проводов.
Если трубка затемнена с одного конца, скорее всего, трубка неисправна. Примеры смотрите на картинке ниже. Если у вас неисправная лампа в приборах с более чем одной трубкой, замените их все.Если один плохой, другой обычно готов потерпеть неудачу. С некоторыми старыми балластами одна плохая лампа может привести к тому, что хорошая не загорится.
Устранение неполадок люминесцентных ламп с балластом быстрого запуска
Если в светильнике есть балласт быстрого запуска для двух ламп, и одна лампа неисправна, другая лампа не загорится. Предпочтительно заменять обе трубки, когда одна из них все равно выходит из строя.
Плохая люминесцентная лампа с обгоревшим концом
Устранение неполадок в светильниках
Если в светильнике есть выключатель, он мог выйти из строя.Иногда язычок внутри гнезда мог погнуться или сгореть. Если он сгорит, вы сможете увидеть повреждения. Если вы считаете, что язычок погнут, отключите питание от розетки. Используя острогубцы, немного вытяните язычок.
Устранение неполадок с выключателем света
Если свет не работает и был заменен на заведомо исправную лампочку, проверьте, не сработали ли какие-либо автоматические выключатели или розетки GFCI (свет в ванной комнате может находиться на стороне нагрузки GFCI). .
Лучший способ проверить однополюсный выключатель освещения — выключить его, снять крышку выключателя и поместить наконечник детектора напряжения рядом с каждой из двух линейных клемм выключателя. Тестер должен показывать напряжение на одной из этих двух клемм, указывая на наличие напряжения на переключателе.
Если тестер показывает наличие напряжения на одной из клемм, включите переключатель, чтобы проверить, присутствует ли напряжение на другой клемме. Если на другой клемме присутствует напряжение, переключатель исправен.Если на другой клемме нет напряжения, возможно, переключатель неисправен.
Если детектор напряжения не может добраться до клемм, когда переключатель все еще находится в электрической коробке, проверьте переключатель с помощью тестера целостности цепи. Отключите питание переключателя, отсоедините одну линейную клемму, проверьте непрерывность при включении переключателя.
Устранение неполадок Нет питания в розетках или лампах
2-позиционный переключатель— как управлять одной лампой из двух или трех мест?
Двухстороннее коммутационное соединение – электрические схемы
Что такое двухстороннее переключение?
Двустороннее коммутационное соединение используется для управления электрическими приборами и оборудованием, таким как вентилятор, точки освещения и т. д., из разных мест с помощью двухпозиционных переключателей.Наиболее распространенное использование двустороннего коммутационного соединения — лестничная проводка, где световой точкой можно управлять из двух, трех или даже многих мест. Независимо от текущего положения двухпозиционного переключателя (ВКЛ или ВЫКЛ), подключенный прибор, например лампочку, можно включить или выключить нажатием кнопки.
Двухпозиционный или трехпозиционный переключатель?
Двухпозиционный переключатель или трехпозиционный переключатель : «Трехходовой» — это североамериканский (США) термин для этого типа переключателя, который используется в следующем учебном пособии.Большинство англоязычных стран (Великобритания/ЕС) называют их «двусторонними». Термин для пары проводов, соединяющих два переключателя, также различается: «стрэпперы» для британцев и «путешественники» для США.
Пожалуйста, не убивайте меня, если я упомяну об этом 2-позиционный переключатель вместо 3-позиционный переключатель , так как все, что мы использовали, является одним и тем же для определенной цели.
Конструкция и работа двухпозиционного переключателя Двухпозиционный переключатель
также известен как однополюсный двойной сквозной (SPDT).Основная конструкция и принцип работы 2-позиционного переключателя показаны на (рис. 1) ниже.
Конструкция и эксплуатация двухпозиционного переключателя SPDT (однополюсного двустороннего прохода)Как подключить двухпозиционный переключатель
Ниже приведена схема подключения (рис. 2), на которой показано, как подключить двухпозиционный переключатель и управлять лампочкой из двух разных мест.
Примечание:
- Та же цель может быть достигнута при использовании следующего двустороннего переключающего соединения на рис. 3.
- Подсоедините заземляющий провод к подключенному электроприбору, а также к выключателям в соответствии с электротехническими нормами в вашем регионе.
Как управлять светом из двух мест с помощью двухпозиционного переключателя?
Следующее двустороннее переключающее соединение может использоваться для той же цели, что и упомянутая выше на рис. 1, т. е. для управления точкой освещения из двух разных мест с помощью двухпозиционных переключателей
Как управлять одной лампой из трех мест с помощью двухпозиционных переключателей?
На рис. 4 схема подключения показывает, как управлять точкой освещения из трех разных мест с помощью двух двухпозиционных переключателей и промежуточного переключателя.
На рис. 5 показано одно и то же соединение для управления точкой освещения из трех мест с использованием разных символов.
Двустороннее переключение для управления светом из двух мест на лестнице
Как мы обсуждали выше, наиболее распространенное использование 2-позиционных переключателей — это управление точкой освещения из разных мест, таких как верхний и нижний этаж, то есть нижняя входная дверь и верхняя дверь. Эта схема показана ниже:
Как управлять светом из шести мест
Ниже приведена схема подключения, которая показывает, как управлять световой точкой из шести разных мест с помощью двух двухпозиционных переключателей и четырех промежуточных переключателей. Обратите внимание, что вы можете управлять еще большим количеством лампочек, добавляя больше промежуточных выключателей в середине цепи.
Применение 2-ходового переключения
- Используется для управления электрооборудованием и приборами из двух, трех и более различных мест путем добавления дополнительных промежуточных выключателей.
- Он также используется для соединения лестничной электропроводки, где точка освещения может управляться из двух или более разных мест.
- Применяется в помещениях большой площади, имеющих две и более входных и выходных двери и калитки.
- Основным назначением 2-позиционного переключения является управление электроприбором переменного или постоянного тока, устройством или оборудованием, особенно световыми точками, с двух мест.
Вы также можете прочитать:
Световод: балласты люминесцентных ламп
Световод
Для работы всех газоразрядных ламп, включая люминесцентные, требуется балласт. Балласт обеспечивает высокое начальное напряжение для запуска разряда, а затем быстро ограничивает ток лампы для безопасного поддержания разряда.Производители ламп указывают электрические входные характеристики лампы (ток лампы, пусковое напряжение, пик-фактор тока и т. д.), необходимые для достижения номинального срока службы лампы и выходного светового потока. Точно так же Американский национальный институт стандартов (ANSI) публикует рекомендуемые технические характеристики входной мощности для всех ламп типа ANSI. Балласты предназначены для оптимальной работы уникального типа ламп; однако некоторые балласты адекватно работают с более чем одним типом ламп. В этих случаях оптимальные характеристики лампы, как правило, достигаются не во всех условиях.Менее оптимальные условия могут повлиять на пусковые характеристики лампы, светоотдачу и срок службы.
Тип цепи и режим работы
Люминесцентные балласты изготавливаются для трех основных типов люминесцентных ламп: с предварительным нагревом, быстрым запуском и мгновенным запуском.
Операция предварительного нагрева Электроды лампы нагреваются перед инициированием разряда. «Пусковой переключатель» замыкается, позволяя току течь через каждый электрод. Выключатель стартера быстро остывает, размыкая выключатель и вызывая подачу напряжения на дугогасительную трубку, инициируя разряд.Вспомогательное питание не подается на электроды во время работы.
Быстрый запуск Электроды лампы нагреваются до и во время работы. Балластные трансформаторы имеют две специальные вторичные обмотки для обеспечения необходимого низкого напряжения на электродах.
Работа с мгновенным запуском Электроды лампы не нагреваются перед работой. ПРА для ламп мгновенного включения предназначены для обеспечения относительно высокого пускового напряжения (по сравнению с лампами предварительного нагрева и быстрого включения) для инициирования разряда на ненагретых электродах.
Быстрый старт — наиболее популярный режим работы для 4-футовых 40-ваттных ламп и 8-футовых ламп высокой мощности. К преимуществам быстрого пуска относятся плавный пуск, длительный срок службы и возможность диммирования. Лампы мощностью менее 30 Вт обычно работают в режиме предварительного нагрева. Лампы, работающие в этом режиме, более эффективны, чем режим быстрого пуска, так как не требуется отдельного источника питания для непрерывного нагрева электродов. Однако эти лампы имеют тенденцию мерцать во время запуска и имеют более короткий срок службы.Восьмифутовые «тонкие» лампы работают в режиме мгновенного запуска. Мгновенный пуск более эффективен, чем быстрый пуск, но, как и в режиме предварительного прогрева, срок службы лампы короче. Лампа F32T8 высотой 4 фута мощностью 32 Вт представляет собой лампу быстрого пуска, обычно работающую в режиме мгновенного пуска с электронными высокочастотными балластами. В этом режиме работы эффективность лампы повышается с некоторым снижением срока службы лампы.
Энергоэффективность
Люминесцентные лампы достаточно эффективны при преобразовании входной мощности в свет. Тем не менее, большая часть энергии, подаваемой в систему люминесцентной лампы и балласта, производит ненужную тепловую энергию.
Существует три основных способа повышения эффективности системы люминесцентная лампа-балласт:
- Снижение потерь балласта
- Работа лампы (лампы) на высокой частоте
- Снижение потерь, связанных с электродами лампы
Новые, более энергоэффективные балласты, как магнитные, так и электронные, используют один или несколько из этих методов для повышения эффективности системы балласт-лампа, измеряемой в люменах на ватт.Потери в магнитных балластах были уменьшены за счет замены алюминиевых проводников медными и использования магнитных компонентов более высокого качества. Потери балласта также можно уменьшить, используя один балласт для питания трех или четырех ламп вместо одной или двух. Тщательная разработка схемы повышает эффективность электронных балластов. Кроме того, электронные балласты, которые преобразуют частоту питания 60 Гц в высокую частоту, обеспечивают более эффективную работу люминесцентных ламп, чем это возможно при частоте 60 Гц. Наконец, в схемах быстрого пуска некоторые магнитные балласты повышают эффективность за счет отключения питания электродов лампы после запуска.
Коэффициент балласта
Одним из наиболее важных параметров балласта для дизайнера/инженера по свету является коэффициент балласта. Коэффициент балласта необходим для определения светоотдачи конкретной системы лампа-балласт. Коэффициент балласта — это мера фактического светового потока конкретной системы лампа-балласт по отношению к номинальному световому потоку, измеренному с эталонным балластом в условиях испытаний ANSI (на открытом воздухе при температуре 25 градусов C [77 градусов F]). Балласт ANSI для стандартных 40-ваттных ламп F40T12 требует балластного коэффициента 0.95; тот же балласт имеет коэффициент балласта 0,87 для энергосберегающих ламп Ф40Т12 мощностью 34 Вт. Однако многие балласты доступны либо с высоким (в соответствии со спецификациями ANSI), либо с низким коэффициентом балласта (от 70 до 75%). Важно отметить, что значение балластного коэффициента является характеристикой не просто балласта, а системы лампа-балласт. Балласты, которые могут работать с более чем одним типом ламп (например, 40-ваттный балласт F40 может работать с 40-ваттными лампами F40T12, 34-ваттными F40T12 или 40-ваттными лампами F40T10), как правило, имеют разные балластные коэффициенты для каждой комбинации ( е.г., 95%, <95% и >95% соответственно).
Коэффициент балласта не является мерой энергоэффективности. Хотя более низкий коэффициент балласта снижает световой поток лампы, он также потребляет пропорционально меньше входной мощности. Таким образом, тщательный выбор системы лампы-балласта с определенным коэффициентом балласта позволяет проектировщикам лучше минимизировать потребление энергии путем «настройки» уровней освещения в помещении. Например, в новом строительстве, как правило, лучше всего использовать высокий коэффициент балласта, поскольку для удовлетворения требований к уровню освещенности потребуется меньшее количество светильников. При модернизации или в зонах с менее важными визуальными задачами, таких как проходы и коридоры, балласты с более низким коэффициентом балласта могут быть более подходящими.
Во избежание резкого сокращения срока службы ламп балласты с низким балластным коэффициентом (<70%) должны работать с лампами только в режиме быстрого пуска. Это особенно актуально для ламп F32T8 мощностью 32 Вт, работающих на высокой частоте.
Определение коэффициента балласта для комбинаций лампа-балласт может оказаться непростой задачей, поскольку немногие производители балластов предоставляют эту информацию в своих каталогах.Однако, если известна входная мощность для конкретной системы лампа-балласт (обычно указана в каталогах), возможна оценка коэффициента балласта.
Мерцание
Электромагнитные балласты предназначены для приведения входного напряжения 60 Гц в соответствие с электрическими требованиями ламп. Магнитный балласт изменяет напряжение, но не частоту. Таким образом, напряжение лампы пересекает ноль 120 раз в секунду, что приводит к колебаниям светоотдачи с частотой 120 Гц. Это приводит к мерцанию около 30% для стандартных галофосфорных ламп, работающих на частоте 60 Гц.Мерцание, как правило, незаметно, но есть свидетельства того, что мерцание такой силы может вызывать неблагоприятные последствия, такие как напряжение глаз и головная боль.
С другой стороны, большинство электронных балластов работают на высокой частоте, что уменьшает мерцание лампы до практически незаметного уровня. Процент мерцания конкретного балласта обычно указывается производителем. Для данного балласта процент мерцания будет зависеть от типа лампы и состава люминофора.
Звуковой шум
Одной из характеристик электромагнитных балластов с железным сердечником, работающих на частоте 60 Гц, является генерация слышимого шума.Шум может увеличиваться при высоких температурах, и он усиливается некоторыми конструкциями светильников. В лучших балластах используются высококачественные материалы и качество изготовления для снижения уровня шума. Шум оценивается A, B, C или D в порядке убывания предпочтения. Балласт класса «А» будет тихо гудеть; балласт класса «D» издает громкий гул. Количество балластов, их уровень шума и характер окружающего шума в помещении определяют, будет ли система создавать слышимые помехи.
Практически все энергосберегающие магнитные балласты для ламп F40T12 и F32T8 имеют рейтинг «А», за некоторыми исключениями, такими как низкотемпературные балласты.Тем не менее, гул магнитных балластов может быть слышен в особо тихой обстановке, например в библиотеке. С другой стороны, хорошо спроектированные электронные высокочастотные балласты не должны издавать заметного шума. Все электронные балласты имеют рейтинг «А» по звуку.
Диммирование
В отличие от ламп накаливания, люминесцентные лампы не могут быть должным образом затемнены с помощью простого настенного устройства, такого как те, которые используются для ламп накаливания. Чтобы люминесцентная лампа могла регулировать яркость во всем диапазоне без сокращения срока службы лампы, необходимо поддерживать напряжение ее электродного нагревателя при снижении тока дуги лампы.Таким образом, лампы, работающие в режиме быстрого пуска, являются единственными люминесцентными лампами, подходящими для диммирования в широком диапазоне. Мощность, необходимая для поддержания постоянного напряжения на электродах во всех условиях диммирования, означает, что балласты диммирования будут менее эффективны при работе ламп на уровне диммирования.
Диммерные балласты доступны как в магнитном, так и в электронном исполнении, но использование электронных диммирующих балластов имеет явные преимущества. Для регулировки яркости ламп магнитные балласты затемнения требуют механизма управления, содержащего дорогостоящие переключающие устройства большой мощности, которые регулируют входную мощность, подаваемую на балласты.Это экономически целесообразно только при управлении большим количеством балластов в одной ответвленной цепи. Кроме того, светильники должны управляться в больших зонах, которые определяются схемой распределения электроэнергии. Поскольку система распределения фиксируется на ранней стадии процесса проектирования, системы управления, использующие магнитные диммирующие балласты, негибки и не могут приспособиться к изменениям в схемах использования.
Регулировка яркости ламп с электронным балластом, с другой стороны, осуществляется внутри самого балласта.Электронные балласты изменяют выходную мощность ламп с помощью низковольтного сигнала в выходной цепи. Коммутационные устройства большой мощности для кондиционирования входной мощности не требуются. Это позволяет управлять одним или несколькими балластами независимо от системы распределения электроэнергии. В системах электронного балласта с диммированием сеть управления низким напряжением может использоваться для группировки балластов в зоны управления произвольного размера. Эта сеть управления может быть добавлена во время реконструкции здания или даже, в некоторых случаях, во время модернизации освещения. Проводку низкого напряжения не нужно прокладывать в кабелепроводе, что помогает снизить затраты на установку. Кроме того, менее затратно изменить размер и протяженность зон освещения путем изменения конфигурации низковольтной проводки при изменении характера использования. Проводка низкого напряжения также совместима с фотоэлементами, датчиками присутствия и входами системы управления энергопотреблением (EMS).
Диапазон диммирования сильно различается в зависимости от балласта. С большинством электронных балластов диммирования уровень освещенности может варьироваться от полной мощности до не менее 10% от полной мощности.Однако также доступны электронные полнодиапазонные диммирующие балласты, которые работают с лампами до 1% от полного светового потока. Магнитные диммирующие балласты также предлагают множество вариантов диммирования, в том числе полное диммирование.
Адаптировано из Руководства по усовершенствованному освещению: 1993 г. (второе издание), первоначально опубликованного Калифорнийской энергетической комиссией.
Дополнительные световоды
Проблемы с флуоресцентным освещением и способы их устранения
Как устранить проблемы с люминесцентным освещением: наиболее распространенные проблемы с люминесцентным освещением и способы их устранения, устранение проблем с люминесцентными осветительными приборами. |
Руководство по люминесцентным светильникам и способам их ремонта
Электрика Вопрос: Моя люминесцентная лампа на кухне включалась не сразу, если вообще включалась.
- Я заменил балласт, который устранил проблему примерно на 3 дня.
- Теперь снова не включается.
- Когда вы нажимаете на выключатель, вы видите мерцание света на одном конце U-образных ламп, но это все.
- Этот светильник имеет 2 люминесцентных лампы U-образной формы.
Спасибо за помощь!
История: Джим, домовладелец из Саутингтона, Коннектикут.
Дополнительные комментарии: Отличный сайт.
Ответ Дейва:
Спасибо за вопрос по электропроводке, Джим.
Как устранить проблемы с флуоресцентным освещением
Применение: Устранение неполадок с люминесцентными светильниками.
Уровень навыков: от начального до среднего.Этот проект электропроводки лучше всего выполняется лицензированным подрядчиком по электротехнике.
Необходимые инструменты: основные ручные инструменты, тестер напряжения и безопасная лестница.
Расчетное время: зависит от личного опыта, осветительного прибора и доступа к осветительному прибору.
Меры предосторожности: определите цепь осветительного прибора, выключите ее и пометьте примечанием перед началом работы с проводкой.
Примечание. Запасные части для светильника должны быть совместимы с установленными люминесцентными лампами.
Наиболее распространенные проблемы с флуоресцентным освещением и способы их устранения
- Неисправные лампы
- Обозначается темными кружками на концах ламп.
- Просто заменяйте лампы, как правило, каждые два года в зависимости от частоты использования.
- Если допустить перегорание ламп в патронах, это может привести к перегоранию балласта.
- При замене балласта всегда заменяйте все лампы и начинайте заново. Лампы
- намного дешевле балласта, к тому же, вам не нужно какое-то время беспокоиться о лампах.
- Плохой балласт
- Как указано выше, при замене балласта убедитесь, что он предназначен именно для используемых ламп.
- Если в приборе был старый магнитный балласт, вы можете рассмотреть возможность его замены на твердотельный балласт.
- В большинстве случаев патроны не потребуют замены, но опять же, вам нужно будет подобрать лампы к балласту.
- Твердотельные балласты гораздо более энергоэффективны, выделяют меньше тепла и менее чувствительны к проблемам запуска при низкой температуре.
- Лампы с одним штифтом
- Это когда один из контактов лампы не находится в гнезде или не контактирует с гнездом.
- Это очень распространенная проблема, но ее легко устранить.
- Снимите лампу и переустановите ее, обращая внимание на совмещение контактов с патроном лампы, а затем поверните лампу, чтобы штифты встали на место.
- В некоторых патронах штырьки лампы вставляются непосредственно на место с небольшим усилием защелкивания.
- Осмотрите патроны для ламп, чтобы определить тип вашего светильника. Никогда не применяйте силу к лампе.
- Без провода заземления
- Люминесцентные лампы требуют, чтобы заземляющий провод от электрической цепи был прикреплен к металлическому каркасу светильника, а заземленный металлический отражатель должен быть установлен в пределах 1/2 дюйма от ламп.
- В некоторых случаях, когда провод заземления подключен неправильно, люминесцентные лампы могут вообще не загореться или гореть тускло, что приведет к преждевременному перегоранию ламп.
- Люминесцентные лампы требуют, чтобы заземляющий провод от электрической цепи был прикреплен к металлическому каркасу светильника, а заземленный металлический отражатель должен быть установлен в пределах 1/2 дюйма от ламп.
- Низкие температуры
- Многие из старых магнитных балластов медленнее запускаются при более низких температурах, и после запуска лампы мерцают, пока не прогреются.
- Например: более ранние балласты неэлектронного магнитного типа имеют минимальную пусковую температуру от 50 до 60 градусов по Фаренгейту для ламп T12 F40, однако новые балласты электронного типа имеют минимальную пусковую температуру 0 градусов по Фаренгейту для ламп T8 F32.
- Как видите, в более холодных условиях лучше заменить осветительную арматуру электронным балластом и установить новые лампы, что устранит проблемы, связанные с низкой температурой.
Подробнее об установке домашнего освещения
Установка электропроводки на кухне
Кухонная электрическая проводка
Полностью поясненные фотографии и схемы электропроводки для кухни с кодовыми требованиями для большинства новых или реконструируемых проектов.
Использование тестеров для выявления электрических проблем
Тестеры для решения электрических проблем
Поиск и устранение неисправностей электропроводки
Типы электрических тестеров
Автоматические выключатели для цепей осветительных приборов
Электрические коды для осветительных приборов
Вам также может быть полезно следующее:
|
Будьте осторожны и соблюдайте меры безопасности — никогда не работайте с цепями под напряжением!
Проконсультируйтесь с местным строительным отделом о разрешениях и проверках для всех проектов электропроводки.
Почините балласт люминесцентных ламп — мастер-класс по ремонту дома
За два дня до Дня Благодарения я зашел в нашу прачечную, чтобы постирать нижнее белье, и заметил, что свет не работает.
После короткой фразы из трех слов (включите свое воображение) у меня начались воспоминания о том, что привело к этому моменту времени.
Во-первых, свет в прачечной пытался включиться несколько дней до этого.
Потом просто перестало работать вообще.
Если вы дадите мне 5 минут, я покажу вам, как это исправить, и вы сэкономите от 75 до 90 долларов, сделав это самостоятельно. Давайте начнем!!
Начало работы: как проверить, не сломан ли балласт люминесцентной лампы
Для этого проекта вам понадобятся только три вида инструментов:
Одним из признаков того, что ваш балласт является причиной неработающей люминесцентной лампы, является то, что лампочки с трудом включаются.
Как я сказал во вступлении, мы заметили, что это происходит в течение 3-4 недель.
Хороший способ проверить, виноват ли ваш балласт, — включить детектор напряжения и поднести его к проводам, подающим питание на балласт.
Если питание подается на балласт, а на люминесцентные лампочки не поступает, это указывает на то, что балласт разряжен. пока, кхм, борьба!!)
Как снять старый балласт и свет
Прежде чем предпринимать какие-либо дальнейшие действия, отключите цепь, которая питает свет.
Затем еще раз проверьте с помощью детектора напряжения, что к фонарю не подведено электричество. Большое спасибо Марку за то, что напомнил мне, что я забыл добавить этот СУПЕР ВАЖНЫЙ совет. Но именно поэтому у меня такие замечательные поклонники, как ты, которые ловят мою рассеянность!!!!
Всего несколько винтов крепят балласт к люминесцентной лампе.
Удалите эти винты с помощью отвертки, но не выбрасывайте их в мусор. В первую очередь из-за того, что с новым балластом у вас могут не получиться новые винты.
Вы можете удалить балласт до или после того, как вы уберете флуоресцентную лампу с потолка.
Чтобы избежать осколков стекла по всему полу, я настоятельно рекомендую снять люминесцентные лампочки. Они прикреплены к балласту, и вам придется отсоединить вилку.
Но будьте осторожны, как вы увидите на видео, я чуть не разбил лампочку на этом этапе. Я иногда такая дура.
Только два винта крепят флуоресцентную лампу к распределительной коробке.Используйте отвертку, чтобы ослабить эти винты, и помните, что свет будет немного падать с потолка.
Сдвиньте рамку фонаря и снимите ее с винтов распределительной коробки.
В этот момент сфотографируйте существующую проводку . Это даст вам справку и поможет с подключением нового балласта.
Если вы не особенно сильны или у вас слабые плечи, попросите друга или родственника помочь с этой частью.
Попросите их подержать свет, пока вы отсоединяете балласт от распределительной коробки.Или, если вы действительно не любите электричество или ваш друг/родственник (шутка), вы можете вместо этого держать свет и позволить кому-то другому отключить его.
Ослабьте все гайки. Мне нравится разбирать черные или горячие провода, затем белые или нейтральные провода и, наконец, землю. Мне просто удобнее делать это в таком порядке.
Вытяните тросы балласта из рамы.
Вот как просто снять балласт люминесцентного света.
Добавление нового балласта к флуоресцентной лампе
Вам нужно взять с собой старый балласт в хозяйственный магазин. Это хорошая идея, чтобы позвонить и узнать, есть ли у них нужный балласт на складе.
Я обзвонил несколько мест, где не было нужного мне балласта. И на самом деле, я все еще столкнулся с небольшими проблемами с купленным балластом (объясняю в конце видео).
Поместите новый балласт на раму люминесцентной лампы и закрепите его винтами, которые вы сохранили от старого балласта.
Протяните черный, белый и зеленый провода нового балласта через отверстие в фонаре.
Попросите друга или родственника подержать фонарь, пока вы подключаете его к распределительной коробке. Серьезно, мне пришлось позвать жену в прачечную, чтобы она помогла. Мне было неловко, что ей пришлось держать свет, пока я возился с проводами.
Но, эй, в этом и смысл брака — помощь друг другу в болезни или здоровье своими руками!!
Если у вас перекручены провода, как показано на рисунке ниже, разрежьте их с помощью комбинированных инструментов для зачистки и снимите изоляцию на 3/4 дюйма.
Подключите новый балласт таким же образом, как и старый. На этот раз я рекомендую сначала подключить землю, затем нейтраль (белый провод) и, наконец, горячий провод (черный цвет).
Поворачивайте гайку, пока соединение между проводами от потолка и балластом не станет надежным.
Вставьте все провода обратно в распределительную коробку как можно аккуратнее.
Наденьте рамку люминесцентной лампы на винты, которые вы оставили в распределительной коробке.Затяните винты, добавьте люминесцентные лампочки и замените абажур.
БАМ!!!! Готово.
Вот мой пошаговый видеоурок для вашего удовольствия. Это покажет вам, насколько легко заменить балласт, или, по крайней мере, я на это надеюсь!!
Если вы можете заменить выключатель света или розетку, вы определенно можете заменить старый балласт, который не работает.
Как я уже сказал в начале, вы сэкономите от 75 до 90 долларов, выполняя это исправление самостоятельно.Несколько лет назад я заплатил нашему электрику, чтобы он сделал аналогичный ремонт в арендованном доме, и вот сколько стоила плата.
И это правильно!! Но мне нравится копить деньги на список продуктов, который, кажется, растет каждую неделю.
Что дальше
Если вы устанавливаете другие электрические устройства, у нас есть несколько руководств о том, как подключить выключатель света, как подключить диммер и как установить розетки GFCI в ванных комнатах.
Если вы занимаетесь ремонтом ванной комнаты и вам нужна помощь, присоединяйтесь к одному из наших онлайн-курсов — они сделают ремонт вашей ванной комнаты намного проще!
Дайте мне знать, если у вас есть какие-либо вопросы, и я сделаю все возможное, чтобы помочь.
Спасибо, как всегда, за чтение, просмотр и участие в нашем замечательном сообществе.