Содержание:
Внутренняя отделка деревянного дома – это завершающий этап его строительства. Обшивка пола, стен и потолка – это не просто дань моде и желание выделится среди соседей, но и эффективное средство защиты дерева от разрушительного влияния влаги, насекомых и различных механических воздействий. В случае, когда дом возведен из такого экологически чистого материала как дерево, облицовка должна быть выполнена из компонентов, которые не нарушают смысл надежности и натуральности. Кроме того, тот факт, что дом из бревна или бруса, может дать усадку, предполагает особенную отделку стен, не разрушающуюся при осадке строения.
Далее Вы узнаете, как обшить деревянный дом внутри гипсокартоном.
Гипсокартон – преимущества и недостатки
Хотя специалисты и советуют обшивку дома из бревна или бруса вагонкой, многие останавливают свой выбор на более бюджетном варианте – гипсокартоне. Обладающий легким весом, хорошей теплоизоляцией, он экологически безвреден и не оказывает сильных нагрузок на фундамент.
Кроме того, гипсокартон – это универсальный, пожаростойкий материал без примесей, который подходит и используется для стен и потолков, удачно скрывает все инженерные коммуникации, кабели освещения, устраняет неровности поверхности и дает возможность создать любой, самый оригинальный дизайн помещения, например, с красивой потолочной многоуровневой подсветкой, плиткой или обоями на стенах, интересными объемными конструкциями. Гипсокартон легкий в монтаже, а поэтому все строительно-монтажные работы можно сделать самостоятельно.
Каркас, который набирают для его крепления, одновременно используется для монтажа утеплителя, а также гидроизоляции.
Виды гипсокартона
- классический — состоит из твёрдого слоя гипса, по краям которого идет обрамление с нескольких слоев картона. Подходит для помещений со средними показателями температуры и влажности;
- влагостойкий – идеальный вариант для деревянного дома, благодаря покрытию влагоотталкивающими и антигрибковыми веществами, препятствующими образованию сырости и плесени;
- специальный – включает в себя армирующие добавки, а поэтому самый прочный тип, способный противостоять большим температурным перегревам и механическим повреждениям;
- комбинированный объединяет в себе лучшие качества предыдущих видов. Он не горит, не подвержен разрушительному воздействию влаги и ультрафиолетовых лучей.
Подготовка стен к облицовке
Дерево – капризный материал, поэтому сразу после возведения стен не спешите приступить к их облицовке:
- перед тем, как зашить поверхности гипсокартоном и декорировать его различными материалами, все щели, неровности и трещины необходимо заделать, чтобы предотвратить появление насекомых или скопление влаги;
- деревянные стены обязательно обрабатывают антисептическими веществами. При этом необходимо выждать несколько дней, не преграждая циркуляцию воздуха, для полного их высыхания и проникновения в дерево, иначе, они могут не принести желаемых результатов;
- в зазор между утеплителем и стеной укладывают пароизоляционную прокладку, чтобы дерево не контактировало с влажными испарениями;
- отделывание стен гипсокартоном предполагает прокладку скрытой проводки. Деформация стен, неправильно вкрученный шуруп или ошибки монтажа декоративного покрытия могут привести к разрыву проводки и пожароопасной ситуации. Поэтому все провода в стенах, полу и потолке защищают специальным металлическим лотком или коробом;
- первое время после строительства, дома из бревен могут просаживаться. Происходит это по следующим причинам: дерево высыхает и теряет влагу, брус выгибается, делая стены неровными. Поэтому велика вероятность деформации облицовочного материала, что крайне нежелательно для нового ремонта. Если времени ждать окончательной усадки не имеется, обшивка выполняется на так называемом «плавающем каркасе», благодаря чему остается неподвижной по сравнению с «планирующим» основанием.
Что такое «скользящий» или «плавающий каркас»?
Под устройством плавающего каркаса под гипсокартон понимают не стандартную, плотно закрепленную на стене обрешетку, а свободное крепление, при котором фиксация по периметру не выполняется, а вместо нее устанавливаются специальные подвесы. Между стеной и планируемой поверхностью остается зазор, который позволяет ей оставаться неподвижной, при изменениях формы стены. Снаружи небольшой отступ маскируется плинтусом и поэтому совершенно незаметен. Направляющие профили в этом типе крепления не применяются и гипсокартон зафиксирован только на тех частях, что прикреплены к основанию.
Как установить каркас
Каркас – это основа всей конструкции облицовки стен – ее позвоночник, поэтому допуская ошибки и его расчете, и установке, Вы рискуете получить кривые, не надежные вертикальные поверхности строения.
В большинстве случаев листы гипсокартона крепятся на подготовленный каркас. Обрешетку под гипсокартон выполняют с деревянного бруса или металлического профиля. Второй вариант, называемый плавающим каркасом для гипсокартона в деревянном доме, используется гораздо чаще. Для его реализации нужно подготовить:
- профиль;
- саморезы, дюбель-гвозди;
- шуруповерт и дрель;
- скользящие подвесы для гипсокартона и «крабики».
Подберите необходимый тип профиля. Обычно для создания обрешетки применяют два вида – направляющий и несущий. Первый, в стандартном исполнении имеет ширину 25 мм и длину 3 метра. Главная задача несущего профиля – взять на себе основную нагрузку облицовочного материала. Он отвечает за прочность и надежность каркаса. При выполнении работ по обустройству каркаса пользуйтесь уровнем, он поможет создать ровную структуру.
Монтаж гипсокартона выполняется следующим образом и имеет свои особенности:
- предварительно рассчитав шаг, на стене делают отметки установки горизонтальных профилей, отступая от потолка на 10-15 см и вертикальных соответственно;
- горизонтальные стойки крепят, фиксируя с двух сторон;
- затем, в заранее отмеченных местах устанавливают скользящие крепления в деревянном доме для вертикальных профилей и монтируют их «крабиками»;
- далее меду вертикальными опорами при помощи саморезов крепят горизонтальные перемычки.
Обшивка гипсокартоном
Чтобы закрепить гипсокартон на каркас, необходимо выполнить следующие действия:
- расчерчивается лист гипсокартона таким образом, чтобы при укладке, стыки попали на вертикальные стойки;
- далее монтажным ножом делается надрез верхнего слоя и лист надламывается;
- лист сгибается под углом, с него срезается обратная сторона из картона;
- отступая минимум 10 мм от края, делается разметка мест скрепления;
- затем формируется еще один разрез и фаска под углом 45°, которая тщательно обрабатывается наждачной бумагой;
- приготовленный гипсокартон монтируют в шахматном порядке, закрепляя саморезами;
- самое важное – правильно отделать места стыков, к которым листы должны идти внахлест и крепится в одном месте;
- крепежи осуществляют на расстояния не более 25 см
После завершения работ гипсокартон декорируют плиткой, красками, росписью. Если планируется поклейка обоев или штукатурка, стены предварительно грунтуют.
Отделка потолка гипсокартоном
Чаще гипсокартон в деревянном доме, применяют для создания оригинальных многоуровневых или просто разных, фигурных потолочных конструкций. Каркас и монтажные работы по креплению выполняются аналогично стенам. При этом стык стены и потолка не должен быть точно впритык, оставьте его свободным, с минимальным зазором. Предварительно разместив под гипсокартоном все провода освещения, продумайте выемки, в которых будут спрятаны лампы или светодиоды.
Деревянный дом хоть и легкий в монтаже, бюджетный в возведении, но имеет ряд специфических особенностей. К таковым относят его существенную усадку, сразу после возведения стен. Поэтому, планируя внутреннюю отделку, нужно ориентироваться на скользящие каркасы, которые являются лучшим вариантом для бревенчатого дома, так как помогут сберечь облицовку от деформации. Установить подобную конструкцию не сложно и самостоятельно. Выбирайте качественные материалы и четко следуйте инструкциям, просматривайте видео-уроки, консультируйтесь или возьмите в помощь специалиста и тогда Ваш дом получится не только красивым, но и прочным, надежным и совершенно безопасным.
Видео по теме плавающий каркас для гипсокартона в деревянном доме
1 плавающий каркас в деревянном доме
2 дома из сухого деревянного каркаса
Древесина является одним из самых востребованных строительных материалов. Ее легко обрабатывать, у нее красивая фактура, единственный существенный минус – небольшая прочность, особенно в местах стыков.
Чтобы избавиться от этого недостатка, точки сочленения заготовок усиливают, используя крепеж для деревянных конструкций. Правильно выбранные элементы крепежа обеспечат должную надежность стыка и долговечность изделия в целом.

Содержание статьи
Назначение деталей крепежа
К крепежам относятся изделия разной конфигурации, предназначенные для придания большей жесткости деревянным деталям. Для изготовления подобных элементов используют прочные и долговечные материалы, к примеру, сталь оцинкованную (ГОСТ 14918-80) или современные композитные сплавы. Различают детали, предназначенные для усиления стыков деревянных заготовок и для создания соединений дерева с рядом других материалов (кирпич, камень, бетон, металлические балки).
Крепежные элементы обеспечивают:
- простоту работы;
- быстрое и надежное соединение нескольких заготовок разной геометрии;
- равномерное распределение нагрузки, как следствие, долговечность каркаса;
- снижение цены готового изделия, поскольку работа выполняется простым инструментом;
- обилие вариантов для сопряжения под разными углами;
- значительную экономию времени.
Крепежные детали отличаются, они подбираются в зависимости от проекта. Можно выделить три основные разновидности металлического крепежа:
- перфорированные элементы;
- детали для скрытой фиксации;
- декоративные накладки.
Выбор напрямую зависит от конкретной задачи. Если для изготовления каркасного сарая можно ограничиться перфорированной лентой и уголками, то для декорирования интерьера предпочтительнее скрытый крепеж или декоративные детали.
Перфорированные элементы
Основа перфорированного крепежа для дерева – листовая оцинкованная сталь толщиной не менее 1 мм. В зависимости от типа и предназначения детали она целиком или частично перфорирована. Чтобы надежно закрепить соединяемые заготовки, достаточно установить накладную деталь на стыке и зафиксировать саморезами или шурупами.
Использование крепежа с перфорацией делает сборку простой, а изделие надежным и долговечным. Все подобные элементы универсальные, благодаря большому количеству отверстий несложно регулировать углы сочленения, количество метизов, обеспечив долговечность и надежность крепления.
Важно! Перфорированный крепеж можно использовать только с резьбовыми метизами (болтами, шурупами или саморезами). Применение гладких гвоздей крайне нежелательно, под воздействием естественного дыхания древесины скоро появится люфт.
Уголок
Задача перфорированного уголка – обеспечить надежность стыков под фиксированным углом. Это одна из наиболее распространенных разновидностей перфорированного крепежа.
Различают уголок:
- симметричный и с разной геометрией сторон;
- с регулируемым и постоянным углом;
- раскрытый и гнутый;
- универсальный и специальный.
По степени нагрузки можно выделить стандартные и усиленные элементы. Вторая модификация имеет одно или несколько ребер жесткости, что увеличивает надежность, но не позволяет изгибать деталь, они имеют фиксированный угол.
Подобные элементы широко применяют на всех производствах, где необходимо скрепить заготовки из дерева. В мебельной промышленности используют конструкционные детали небольшого размера из металла или пластика, на стройке не обойтись без стропильных уголков разной конфигурации.
Лента
Металлическая лента с перфорацией предназначена для усиления угловых сочленений деревянных заготовок и фиксации «наращенной» доски. Удобство использования данного типа крепежа вызвано универсальностью, ленту несложно изогнуть под нужным углом, используя метизы, надежно зафиксировать соединение.
С помощью ленты несложно скрепить несколько заготовок, которые сходятся в одной точке, ею можно усилить (стянуть) элементы конструкции объемного изделия. В продажу поступает материал разной ширины с разным диаметром и шагом отверстий. Можно купить отрезки стандартной длины или нерезаный рулон.
Пластины
Крепежные пластины для дерева предназначены в первую очередь для усиления Т-образных соединений, глухих стыков под разными углами или соединений крест-накрест.
В отличие от ленты пластина имеет большую толщину, часто она не допускает изгиба. Пластины перфорируют по-разному, в продажу поступают детали со сплошной перфорацией или с выделенными крепежными площадками.
Кронштейны
Усиленной разновидностью перфорированного уголка являются кронштейны. Основное их предназначение – фиксация деревянной заготовки на стене из различного материала, чаще всего это кирпич или бетон. Яркий пример кронштейнов – держатели балок и опоры для бруса.
Среди прочего подобные элементы используются:
- для надежного крепления балок любой несущей конструкции;
- в ходе монтажа полов, создания межэтажных перекрытий;
- для сборки объемных конструкций, в которых необходима повышенная надежность соединения.
Изделия изготавливают из стали толщиной от 2 мм, в продажу поступают детали разных размеров и формы. Одним из самых распространенных кронштейнов является опора для бруса. Это перевернутая П-образная деталь, в которой перемычка служит для фиксации балки, а на боковых сторонах имеются монтажные «уши» для крепления на стену. «Уши» могут быть обращены в разные стороны (открытый) и внутрь (закрытый крепеж).
Совет! Использование кронштейнов закрытого типа позволяет создать деревянное перекрытие со свободными балками. Особенности крепления обеспечат достаточную надежность, а сам крепеж будет практически незаметным.
Скрытый крепеж
У перфорированных крепежных элементов есть один существенный недостаток – созданное с их помощью соединение не отличается эстетикой. Если для изготовления каркаса бытового помещения или создания стропильной системы это некритично, то для перекрытия или деревянной лестницы в доме это имеет решающее значение.
Чтобы обеспечить должную прочность соединения и не испортить привлекательность всей конструкции, используется скрытый крепеж. Его особенность понятна из названия – крепежные детали не видны. Существует множество изделий, предназначенных для скрытого крепежа, они отличаются по ряду характеристик:
Фиксация шип-паз
Принцип действия аналогичен популярному столярному соединению, но его элементы изготовлены из металла. На одну из сопрягаемых деталей с помощью саморезов крепится металлический паз, на другую шип. Благодаря прочности материала и точности изготовления соединение получается прочным, надежным и полностью скрытым.
Соединение «еж»
Его основа – шайба с отверстиями под саморезы, просверленными под разными углами. Завинченные в них шурупы расходятся в разных направлениях, что обеспечивает должную прочность. Шайба прячется за другими деревянными деталями.
Пазовый держатель
Помогает создать ровную деревянную поверхность с отличными потребительскими характеристиками. Это металлические пластины разной конфигурации, которые крепятся к лагам и входят в пазы досок.
Замковый потайной держатель
Крепеж также применяют для создания поверхностей, пример: терраса, выстеленная деревом. Держатель устанавливается на торцах досок, его составные части маскируются под стыками.
Каждый из описанных методов имеет большое количество вариаций, что позволяет выбрать подходящий вариант для любого проекта.
Декоративные крепежные элементы
Еще одним отличным способом надежно скрепить деревянные детали без ущерба для эстетики является использование декоративных элементов. Основное отличие очевидно: вместо того чтобы прятать крепеж, его «выставляют напоказ», делая органичной деталью всей конструкции.
Разнообразие декоративного крепежа поражает. Это и монтажные уголки для деревянных конструкций самых замысловатых конфигураций и дизайнерских решений, и накладки из надежных и красивых материалов. Можно купить декоративную ленту, стильный дизайнерский подвес и многое другое. Все подобные детали комплектуются метизами, выполненными в одном стиле.
Декоративный крепеж изготавливают из металла или пластика. Безусловно, металл предпочтительнее, но современная пластмасса часто не уступает ему ни в качестве, ни в долговечности.
Крепежные элементы для деревянных конструкций – незаменимая вещь в ходе строительства, ремонта, изготовления мебели или поделок из дерева. Обилие вариантов позволяет выбрать оптимальное решение для каждого конкретного случая. Правильно подобранный крепеж обеспечит должную прочность соединения, не требуя от мастера чрезмерных усилий.
Все фото из статьи
Возможно, крепежные элементы для деревянных конструкций для кого-то считаются ненужным нововведением, мол, избу следует рубить без единого гвоздя, и такое мнение, конечно, заслуживает уважения.
Тем не менее, различные уголки, скобы, кронштейны, пластины, скользящие крепления и тому подобная фурнитура на много облегчает монтаж бруса и брёвен и от этого остаются в выигрыше, как заказчик, так и подрядчик, ведь сэкономленное время в большинстве случаев экономит деньги.
Мы сейчас расскажем вам, какой бывает металлическая фурнитура для крепежа пиломатериалов, и приведём некоторые примеры её использования, а также продемонстрируем видео в этой статье.

Крепёжные элементы для дерева
Крепёжная фурнитура
Разнообразие металлического крепежа в строительстве деревянных сооружений и производстве мебели достаточно велико. Но такая фурнитура не является прерогативой каких-то частных или государственных организаций – её всегда можно приобрести в мебельных и хозяйственных магазинах нашей страны.
Резьбовая фурнитура
- Самые распространённые виды крепежа для деревянных конструкций, это кольцевые анкерные гвозди, клиновые анкеры, шурупы универсальные и с шестигранной головкой, саморезы, резьбовые шпильки, шестигранные гайки и металлические шайбы. Такая фурнитура зачастую является вспомогательной не только для стыковки бруса, а для другого накладного крепежа, о котором речь пойдёт ниже.
- Зачастую инструкция от производителя гласит о том, что вся фурнитура такого типа должна быть из закалённой стали, а для наружных работ непременно нужно оцинкованное покрытие. Чёрные фосфатированные саморезы рекомендуются к использованию исключительно для внутренних работ, да и то, при условии, что в помещении не будет повышенной влажности.
- Для монтажа деталей с перфорированным крепежом рекомендуется использовать низкоуглеродистые гальванически оцинкованные шурупы с конусной головкой, которая хорошо утапливается в перфорированную поверхность лент, уголков и тому подобных элементов.
- Для крупных деталей (участки с повышенной нагрузкой) рекомендуется использование низкоуглеродистых оцинкованных шурупов с шестигранной головкой (учитывается норма использования DIN571). Конечно, цена оцинкованной электролитической стали несколько выше обычной, зато такой крепёж позволяет не беспокоиться о надёжности фиксации деталей.
Примечание. В настоящее время профессиональные строители зачастую используют рифлёные (кольцевые) и стропильные гвозди. У них, в отличие от шурупов по дереву, каждый виток замкнут, что обеспечивает большую прочность на разрыв – вытянуть их после монтажа практически невозможно.
Уголки крепёжные

Крепежные изделия для деревянных конструкций – уголки разного типа
Всем нам известный перфорированный металлический уголок можно универсальным приспособлением, которое используется, как при строительстве деревянных сооружений и сборке мебели, так и при обустройстве вентилируемых фасадов. Они могут быть разных размеров, но это зависит от их назначения, то есть, учитывается сила нагрузки на данный узел и его конфигурация.
Обратите внимание! Самые маленькие перфорированные уголки нужны для сборки мебели, устройстве перегородок, оконных и дверных проёмов, обрешёток (каркасов) для утеплителя и облицовки, а более крупные нужны для деревянных балок.
В любом случае такая фурнитура должна быть уже тех деталей, которые стыкуются при её содействии, как минимум, на 2-3 мм с каждой стороны. В тех случаях, когда брус крепят к бетонной плите или блоку, то на детали должны быть отверстия под анкерные болты.

Усиленные уголки с ребром жёсткости
При сборке узлов, где в дальнейшем предусматриваются большие нагрузки на сгибание, используется перфорированный оцинкованный уголок с одним или двумя рёбрами жёсткости, где толщина металла должна быть не менее 2,5-3 мм.
Перфорация, расположенная на концах элемента, может быть 5, 7, 11, и 14 мм в диаметре – такое разнообразие позволяет осуществлять крепёж при помощи саморезов, винтов и анкерных болтов разного сечения.

Стропильные уголки
Фиксирующие элементы такого типа, как на верхнем фото, используются при монтаже стропильных систем для крепления стропильных ног к мауэрлату и для обустройства мансардных окон на покатой крыше. Настоящий уголок освобождает от необходимости выпиливать (вырубать) пазы на балках, так как сам элемент состоит из двух частей, которые пересекаются под косым углом и их можно смещать относительно друг друга.
Ленты и пластины

Перфорированная лента
Перфорированная лента используется для усиления различных узлов, которые соединены под углом, например, это может быть соединение стропильных ног, где закреплённая сверху лента не позволит стыку разойтись. Толщина ленты варьируется от 0,8 мм до 1,5 мм, и её применение зависит от мощности нагрузок, которые будут оказываться на формируемый узел.

Пластины с перфорацией
Очень похожи на ленту пластины с перфорацией, но их толщина значительно больше и достигает 2-2,5 мм, а используют их практически для любых соединений в одной плоскости вне зависимости от назначения (это может быть, как скрытый, так и открытый крепёж).
Такие детали можно применять на открытом воздухе в условиях повышенной влажности, так как сталь здесь оцинкована. Элементы являются накладными и не требуют врезки, фиксируются при помощи гвоздей или шурупов.
Опоры

Опоры
Есть такой тип крепежа для деревянных балок, как опоры, которые могут прикручиваться к основанию или же бетонироваться, к тому же, у них может быть база для колонны, которая будет регулироваться домкратом, то есть, балку можно регулировать по высоте.

Регулируемая опора
Регулируемая опора позволяет защитить комель деревянной балки от сырости, а также это является компенсатором при просадке здания в первый год-полтора после строительства. Впрочем, основная сфера применения такого конструкционного элемента и есть деревянные дома, рассчитанные на усушку и усадку.
Зубчатые пластины и шайбы

Зубчатая пластина (слева) и шайба (справа)
Зубчатые пластины крепежные для деревянных конструкций используются для стягивания элементов и предотвращения скольжения вместо различных винтов или в совокупности с ними, в странах Евросоюза маркируется, как BULLDOG. При стыковке зубцы вдавливаются в поверхность древесины, обеспечивая дополнительную прочность соединению.
Заключение
При строительстве и ремонте своего дома вы всегда можете облегчить себе работу, если будете использовать металлическую крепёжную фурнитуру. Кроме того, монтаж такого крепежа своими руками повышает прочность узлов и их эксплуатационный ресурс.
Все фото из статьи
В зависимости от ситуации и поставленной перед нами задачи крепление деревянных конструкций между собой может осуществляться с использованием самых разных технологий. В нашей статье мы расскажем о том, какими способами можно соединить деревянные детали, а также уделим внимание особенностям реализации этих способов.

Для стыковки элементов применяются не только разные методы, но и разные дополнительные приспособления
Классификации соединений
Узлы крепления деревянных конструкций – это места, где стыкуются две или более деталей. Именно прочность узла зачастую определяет прочность самой конструкции, потому при обустройстве соединения его качеству и надежности уделяют самое пристальное внимание.

Крепить детали можно разными способами
На сегодняшний день в строительстве и столярном деле используются самые разные методы, позволяющие закрепить детали из дерева друг на друге. В зависимости от того, какой фактор положен в основу классификации, все эти методы можно разделить на несколько групп.
Так, по способу передачи усилия соединения деталей из дерева и аналогичных материалов делят та такие типы:
- На механических связующих элементах (гвоздях, шурупах, саморезах, заклепках и т.д.).
Обратите внимание!
Сюда же обычно относят узлы, при оформлении которых применяются специальные пластины для крепления деревянных конструкций, кронштейны, накладки и т.д.

Разные виды крепёжных пластин
- На упоре элементов деревянных конструкций (врубки, шипы, нагели и т.д.)
- На клеевом соединении.
Эта классификация является одной из наиболее простых, однако она дает представление обо всем разнообразии технологий, применяемых при работе с деревом.
Кроме того, иногда специалисты выделяют и другие группы узлов, а именно:
- Сращивание по ширине.
- Сращивание по длине.
- Вертикальное соединение.
Как правило, при реализации этих схем инструкция допускает как использование металлического крепежа, так и применения клея. В то же время в ряде ситуаций стыковка осуществляется за счет формирования специальных выступов и впадин, которые играют роль своеобразных замков.
Механические соединения
Начинающие мастера, выполняя работы своими руками, чаще всего используют механический крепеж. При этом для фиксации частей конструкции используются специальные элементы – гвозди, шурупы (в т.ч. самонарезающие), шпильки, заклепки, болты и т.д.

Метизы для крепления деревянных конструкций отличаются разнообразием форм и размеров
Этот способ крепления не отличается сложностью, однако при его реализации стоит придерживаться таких рекомендаций:
- Когда мы используем гвозди, нагрузки равномерно распределяются между двумя деталями и компенсируются силой трения о древесные волокна. Соответственно, для надёжного соединения необходим контакт между древесиной и гвоздем по всей его длине.
Важно!
Крепеж, расположенный вдоль волокон, фиксирует куда хуже, чем забитый поперек.
- С другой стороны, при забивании гвоздя сама деталь испытывает достаточно серьёзную нагрузку, так что если диаметр крепежа будет избыточным, то тонкая деревянная пластина может расколоться. Чтобы избежать этого, опытные мастера советуют откусывать клещами острие гвоздя – тогда полученная плоская часть будет раздвигать и сминать волокна, а не рвать их.

Простой гвоздь обеспечивает надежную фиксацию
- При использовании шурупов и саморезов надёжность крепления повышается, так как за счет спиральной поверхности элемента возрастает площадь соприкосновения с древесиной. Если же шуруп забивать, а не завинчивать, то прочность соединения снижается на 40-50%.
- Во избежание раскалывания древесины, а также для облегчения работы для фиксации с использованием крепежа диметром более 6 мм выполнять предварительное сверление. При этом оптимальный диаметр отверстия должен составлять около 0,6 – 0,8 диаметра шурупа.

Самонарезающие шурупы по металлу и дереву
- Болтовые соединения осуществляются только по предварительному сверлению. При этом болт должен проходить внутри отверстий с некоторым усилием – тогда место контакта долгое время не будет расшатываться.
- Для повышения надёжности и под шляпку болта, и под гайку укладываются плоские шайбы, которые более равномерно распределяют нагрузку и предотвращают сминание древесных волокон.
Различные метизы – гвозди, саморезы и т.д. – необходимы и тогда, когда используется уголок для крепления деревянных конструкций. В этом случае крепежный элемент объединяет древесную основу с металлической деталью, которая отвечает за перераспределение нагрузки между деревянными элементами конструкции.

Фиксация деталей на кронштейны
Соединения с клеем и без него
По ширине
Стыковка деталей без применения крепежа также возможна. Иногда монтаж осуществляют исключительно за счет упругости древесины, но обычно для повышения надёжности контактирующие поверхности смазывают различными клеевыми составами. Высыхая, они формируют практически монолитную линию контакта, за счет чего соединение становится неразъемным. Цена конструкции при этом возрастает ненамного, а вот запас прочности увеличивается.
В зависимости от расположения соединяемых элементов выделяют соединения по ширине, по длине и по высоте.

Соединение по ширине: а) плоская фуга, б) четверть, в) рейка, г) и д) гребень, е) ласточкин хвост.
Когда нам нужно состыковать несколько досок или брусьев по ширине, то применятся одна из методик, описанных в таблице ниже:
Способ | Особенности обустройства |
На гладкую фугу |
|
На рейку |
|
В четверть |
|
В гребень |
|
В ласточкин хвост |
|

Соединение на гребень
По длине
Соединение дерева по длине применяют в том случае, если нам необходимо нарастить размер деревянной доски, балки или бруса. Здесь используются сходные методики, однако длинные детали испытывают повышенные нагрузки на изгиб, потому и крепление необходимо осуществлять с хорошим запасом прочности.
Наиболее распространенными способами сращивания деревянных конструкций по длине являются:
- На ус. Участки соединяемых деталей обрезаются под углом таким образом, чтобы площадь контакта была максимальной. При этом чем более острым будет угол среза, тем надежнее будет фиксация с помощью клея или крепежа.

Схема склейки на ус
Обратите внимание!
Креплением «на ус» можно сращивать даже достаточно толстые фанерные листы, и если все сделать правильно, прочность материала в месте стыка снизится незначительно.
- На зуб. На торце одной детали формируются зубья, на другой – соответствующие впадины. Элементы вклеиваются друг в друга, при этом за счет большой площади контакта прочность фиксации возрастает в разы.
Фото зубчатой склейки
- В четверть. Выполняется так же, как и при монтаже по ширине, но выборка делается не на боковых, а на торцевых плоскостях.
- В замок. На краях соединяемых брусьев делают вырубки, позволяющие скрепить их, зацепив друг за друга. Как правило, если для крепления используются только механические элементы (гвозди или нагели), то плоскости замка делают ровными, а если добавляется клей – то косыми.

Прямой и косой накладные замки
Важно!
Иногда внутрь замка вставляют дополнительный усиливающий элемент – рейку.
В этом случае под нее делают специальную выборку соответствующего размера.
Нужно отметить, что некоторые методики продольного сращивания применяются и при оформлении углов. Так, наиболее популярными являются угловые узлы, вырубленные «в четверть», «в полдерева» и «в замок», хотя в строительстве активно используют и другие схемы.

Варианты угловых соединений
По высоте
При возведении опор, столбов, мачт и других вертикальных элементов иногда возникает необходимость увеличить высоту конструкции.
При этом используются такие способы фиксации деталей:
- Крепление впритык с потайным шипом или сквозным гребнем. На нижней опоре формируется шип или гребень, на верхней – соответствующее углубление. Конструкции стыкуются, после чего место контакта усиливается дополнительным крепежом.

Схемы вертикального наращивания: а)-б) впритык, в)-д) вполдерева, е) косым прирубом, ж) накладкой
- Крепление вполдерева. На опорах делаются симметричные вырубки на 1/2 толщины, а затем детали соединяются. Зажим осуществляется либо с помощью стальных сквозных болтов, либо с использованием накладных хомутов/полосовой стали.
- Косым прирубом. Принцип выполнения узла тот же, что и в предыдущем случае, но закрепление осуществляется только с использованием хомутов.
- Наконец, можно просто установить одну опору поверх другой, а для предотвращения бокового смещения использовать более тонкие брусья либо металлические крепления для деревянных конструкций.
Нужно отметить, что все вышеописанные способы хорошо работают только для компенсации вертикальных нагрузок. Напряжение на изгиб в месте крепления способно очень быстро разрушить узел, потому вертикальное сращивание применяют только в тех случаях, когда по-другому просто не получается.
Заключение
Конструируя и монтируя элементы крепления деревянных конструкций, стоит использовать как можно более надежные методики фиксации – тогда общая прочность сооружения в месте контакта деталей будет снижена ненамного. Для более подробного изучения упомянутых выше технологий стоит внимательно изучить видео в этой статье.
Занимаясь изготовлением предметов из натурального дерева, монтажом контейнеров, сборных домов и блоков, приходится в системе закупать не только уголок, ленту, перфорированные пластины, но и специальный крепеж для связки стропил. Трудно обойтись только гвоздями, саморезами, анкерами, шпильками. Для строительства, изготовления предметов мебели, других вещей, которые используются для обустройства интерьерных и экстерьерных зон, предлагается подобрать перфорированный крепеж для деревянных конструкций – каталог с фото и публикуемый прайс-лист, упростят заказ необходимых позиций.
В чем особенность DMX?
Конструкционные соединительные элементы выполнены на основе прочной оцинкованной стали с покрытием из специального антикоррозионного слоя. Товар предложен по сходной цене для опта и розницы. В ассортименте представлены разновидности соединителей, предназначенные для:
- Качественной сборки, прочной фиксации деревянных элементов в единый узел.
- Долговечного крепежа деревянных модульных и каркасных домов, загородных коттеджей, дач, хозблоков, бытовок и пристроек.
- Временного и капитального строительства, реконструкции, модернизации и реставрации построек, выполненных из бруса или бревна.
В зависимости от предназначения, функциональности используемых элементов, специфики монтажа – выберите перфорированный крепеж для деревянных конструкций, купить который лучше всего, предварительно проконсультировавшись у опытных специалистов интернет-магазина.
При сборке кровли, занимаясь монтажом различных стропильных систем, других несущих конструкций, нужного выдерживать требуемый проектом уровень жесткости за счет перфорированного крепежа, чтобы конструкции были долговечны, безопасны. Приходится устанавливать и скользящие соединения (крепежный уголок), работая в нижней части стропил с мауэрлатом.
Заказывая перфорированный крепеж для деревянных конструкций, цена на который представлена обновляемым прайс-листом, уточните требуемое количество на складе поставщика. Выгоднее заказывать товар оптом, изучив конструкционные особенности узких усиленных и плоских креплений, а также с Т-образным и Z-образным сечением.
Пластины, монтажные ленты, углы с элементами перфорации, как и основательный крепеж для балок, консолей – все это представлено в ассортименте. Обновляемый выбор позволяет подобрать специальные детали из категории WBZ (для внутреннего монтажа), чтобы реализовать сложные инженерные решения.
Предложенный товар имеет высокое качество, наличие соответствующих сертификатов. Кроме широкого выбора, универсальности соединителей, понравится простота, оперативность монтажа. Это весомый аргумент для заказчиков, кто ищет не просто прочный, надежный крепеж, а стремится купить штучные соединители без отходов. Это минимизирует затраты на монтаж, позволяет экономить финансы, время, оплату за труд мастеров. Не переплачивая на доставке, не тратя время на поиски нужного товара, сможете выгодно приобрести по оптовой цене перфорированный крепеж для стропильной системы, зная, что:
- Необходимо заранее заказывать в нужном количестве все соединительные элементы, ориентируясь на смету строительства или техническую спецификацию, характеристики изготавливаемых изделий.
- Кроме оригинального наименования уголков, пластин, скоб, что используются при работе с деревом, гипсокартонном, необходимо уточнить предназначение соединителей, специфику сборки, точный размер элементов. Многие детали применяют в оформлении фасадов, для прочной сборки коньковых узловых соединений, стропильных систем.
- Антикоррозионный эффект оцинкованного покрытия придает соединителям универсальность, расширяет возможности деталей. При проведении внутренних и внешних строительных работ перфорированные отверстия используют как под болты, саморезы, так и шурупы, гвозди.
- Сходную цену для опта, розницы позволит сравнить каталог – перфорированный крепеж для деревянных конструкций здесь проще подобрать, чтобы:
- На основе перфорации придать достаточную прочность стропильным системам.
- Обеспечить надежное закрепление всех элементов узла из дерева.
- Создать требуемую жесткость, независимо от угла соединения.
В строительстве срубов приходится крепить не только балки и прогоны, обрешетку, но и заниматься прочным соединением всей стропильной системы, других узлов, крепящихся к деревянным балкам. Предложенный ассортимент пригодится при проведении монтажных работ в зоне фундамента, при облицовке плитами всевозможных фасадов.
Выбор крепежа – только на первый взгляд вопрос простой, а на самом деле очень ответственный. Самая главная причина, зачем он, в принципе, нужен – это повышение надежности деревянной конструкции. При этом не требуется вырезать сложные столярные соединения, а значит, несущие способности балок и брусьев не страдают. Вдобавок, древесина – ведь не самый прочный материал и подвержена расширению, сжатию, образованию сколов. Если правильно рассчитать и подобрать систему соединений, то можно избежать деформации и разрушения конструкций из дерева. К примеру, балка не будет прогибаться, если крепеж выдерживает соответствующую нагрузку
Любой проект деревянного дома сегодня обязательно включает не только расчеты по фундаменту, стенам и кровле, но и необходимый комплект крепежа. С помощью различных видов креплений элементы каркасов, ферм и других конструкций соединяются по ширине, длине или под углом. Пожалуй, самое широкое применение сегодня получил перфорированный крепеж – он универсален и надежен, имеет высокую грузоподъемность, представлен большим количеством разновидностей. В качестве сырья всеми производителями сегодня используются высокопрочные низкоуглеродистые и среднеуглеродистые стали (содержание углерода не более 0,4%).
Может показаться, что крепеж – это слишком дорогое удовольствие, дополнительные затраты. Но на самом деле при его использовании объем древесины, который потребуется, к примеру, на строительство кровли, уменьшится как минимум на 20%, а то и на 30%, за счет уменьшения сечений балок без потери качества. В сфере крепежа для деревянных конструкций есть традиционный, проверенный временем ассортимент и новинки. Рассмотрим все подробно, исходя из типа креплений.
Уголки
Уголки с толщиной металла от 1 мм являются самым распространенным видом крепежа, а также самым экономным по расходованию средств и времени. Уголки не требуют врезки, поэтому положительно влияют на несущие способности деревянных конструкций. В основном, их выбирают для соединения горизонтальных элементов с вертикальной несущей поверхностью. Нужно точно знать размер и ту нагрузку, на которую рассчитана деревянная конструкция.
Уголки производят со сторонами (полками) равной или разной длины, с отверстиями для болтов, шурупов или саморезов (перфорированные), простые или усиленные. Они легко устанавливаются и не требуют специальных инструментов. Уголки выпускаются в широкой номенклатуре размеров, но могут быть изготовлены и под индивидуальный заказ. В этом случае необходимо провести тщательный замер и определиться с количеством и типом креплений.
Уголки с равными сторонами используются при монтаже стропильных систем, что значительно ускоряет и упрощает процесс. Для широких балок требуются широкие уголки, для узких – соответственно, узкие.
Неравнополочные (или анкерные) уголки относятся к самому популярному виду крепежа; они требуются при соединении деревянных балок между собой, а также с каркасными элементами из других материалов – стали, бетона, кирпича. Кроме того, они используются для прочной фиксации столбов, колонн и опор.
Усиленные уголки – также один из самых ходовых типов крепления с толщиной металла, как правило, 2–3 мм. Они имеют одно или несколько ребер жесткости на сгибе и применяются для соединения деталей в кровельных и фасадных конструкциях.
В части плоскости между прямыми линиями уголки могут быть не только прямыми, но также тупыми (обычно 135 градусов). Они подходят для соединения элементов стропильной системы.
Пластины
Пластины делятся на крепежные и соединительные. Крепежные пластины фиксируют сразу несколько элементов. Они используются в домостроении для горизонтальных и вертикальных соединений деревянных элементов, оптимальны для стыков в перегородках стропильной фермы, подходят также для Т-образных пересечений и при скреплении торцами. Пластины имеют отверстия для саморезов и болтов, изготавливаются из листовой стали и покрыты антикоррозийным составом, что обеспечивает их прочность и надежность.
Соединительные пластины выполняют те же функции, что и крепежные, но при этом они чуть больше по размеру (длиной – до 100 мм, шириной – до 1200 мм). Самые востребованные простые пластины имеют толщину 2 мм, усиленные – 4 мм. Кроме того, соединительные пластины отличаются от крепежных тем, что перфорация для шурупов у них более частая и одинакового диаметра. Это позволяет закреплять балки и другие элементы под любым углом.
Для усиления прочности и несущей способности деревянной конструкции применяется перфорированная монтажная лента. Одно из главных ее достоинств и отличий от других пластин заключается в том, что она универсальна (отверстия для болтов и шурупов просверлены таким образом, что подойдут для различных конструкций) и может прослужить длительный срок – до 10 лет.
Еще одна разновидность пластин – это так называемые металлические зубчатые пластины (МЗП). Их штампуют из оцинкованной стали и нарезают под нужные размеры. В итоге получается лист с рядами гвоздей с общим основанием. МЗП запрессовывают в местах соединения. Такая технология позволяет создавать абсолютно идентичные конструкции (к примеру, стропильные фермы), экономить время, бюджет и материалы. Однако необходимость специального пресса и абсолютно ровной поверхности для вдавливания таких пластин в деревянную конструкцию делает ее более подходящей для промышленного производства, чем для индивидуального строительства, если это не крупный загородный дом.
Опоры
Опоры – это металлические оцинкованные крепежи и кронштейны для деревянных балок и брусьев, которые позволяют стыковать их под прямым углом друг с другом или с другими элементами (в том числе из других материалов). Кроме стандартных опор, точно соответствующих размерной номенклатуре брусьев, существуют также регулируемые по ширине кронштейны.
По принципу крепления опоры бывают открытые и закрытые. У первых конструкция находится на виду, у вторых балка или брус при установке придавливает «ушки» опоры, частично скрывая ее за деревянным элементом. Это делается для повышения надежности крепления. Скрытый кронштейн позволяет полностью спрятать крепеж внутри балки. Для этого на торце пропиливается узкое вертикальное отверстие (туда войдет кронштейн, закрепленный на несущей стене) и отверстия для штифтов, которые окончательно зафиксируют крепеж. Оптимальный размер кронштейна – две трети высоты балки.
Для стропил производится свой, особый вид крепежа – скользящая опора. Этот кронштейн с уголком со специальной петлей – самый незаменимый элемент крепления, который дает возможность смещения стропил относительно мауэрлата (строительной балки) во время естественной усадки дома. По оценкам специалистов, подвижность сруба может достигать 15%, и если при этом крепление стропил будет жестким, то кровельная система неизбежно подвергнется деформации. Скользящие опоры производятся из низкоуглеродистой стали – прочной и пластичной, и обрабатываются антикоррозийным составом.
Бороться с естественной усадкой, вернее с ее негативными последствиями, помогает еще одно крепление под названием анкер регулировочный по высоте. У него существует как минимум еще четыре названия: строительный домкрат, регулировочный винт, винтовая опора, компенсатор усадки. Анкер представляет собой многофункциональный крепеж, состоящий из винта и двух площадок с гайкой и шайбой. Он ставится под основание опорных колонн и регулирует их по высоте, таким образом, контролируется равномерная усадка сруба. Регулирование происходит с помощью гайки и шайбы. Компенсатор прослужит минимум пять лет и позволит сохранить стены и внутреннюю отделку в целости.
Отдельный вопрос – крепление несущих балок при монтаже пола или потолка. Для этих целей используются опоры под названием держатели балки, которые выпускаются по форме правые и левые. Этот крепеж прочно закрепляет балку, исключает ее провисание и деформацию. Важно отметить, что устанавливается крепеж очень просто, без специальных инструментов и бригады строителей.
Отдельный вид крепежа разработан для колонн. Эта конструкция представляет собой опорную пластину с отверстиями под анкерный (или дюбельный) крепеж и квадратный короб или полый цилиндр, в который и вставляется колонна. Такие опоры бывают закладные и свободного опирания, регулируемые и нерегулируемые, скрытые и открытые. Опора крепится на бетонный фундамент анкерными болтами, защищает основание колонны, предотвращает гниение дерева и надежно закрепляет тяжелый элемент без бетонирования.
Все перечисленные стальные крепежные элементы должны быть фирменными изделиями – только тогда можно гарантировать, что они смогут выдержать расчетные нагрузки. Среди лидеров регионального рынка крепежных изделий необходимо выделить европейского производителя крепежной фурнитуры Simpson Strong-Tie, чья продукция считается образцом для рынка, ЗАО «НПФ «Петротех», которое выпускает крепежные детали методом холодной штамповки с 2000 года, тесно сотрудничая с научно-исследовательскими центрами при разработке новой продукции.
Виды строительного крепежа
К крепежу для деревянных конструкций необходимо отнести саморезы, шурупы и болты. В первую очередь, они требуются для монтажа соединительных элементов – уголков, пластин, опор. Кроме того, такой крепеж может применяться в тех случаях, когда не нужен десятикратный запас прочности. Для деревянных стен и кровли специалисты рекомендуют выбирать оцинкованные детали, так как они будут находиться в условиях естественной влажности снаружи дома и внутри балок и брусьев и при этом не будут ржаветь и подвергаться коррозии.
Гвозди
Для перфорированных крепежных деталей, которые требуют повышенной прочности, выпускаются специальные анкерные гвозди (их еще называют ершеные). Главная особенность таких гвоздей – в особой конической конструкции под шляпкой. При забивании она расклинивается в отверстии. Гвоздь просто забить, но крайне сложно выдернуть, что требует предельной точности при работе. Поперечная насечка увеличивает прочность крепления в пять-шесть раз по сравнению с обычными гвоздями. А максимально плотная посадка гвоздя в перфорированный крепеж достигается за счет подборки диаметра отверстия. В итоге, ершеный гвоздь не выходит со временем из древесины, его не нужно вбивать повторно. Для монтажа стропильной системы следует выбирать одноименные стропильные (рифленые) гвозди с продольными бороздками на стержне – они обеспечивают высокую несущую способность.
Шурупы
Шурупы, а также их разновидность – саморезы, изготавливаются из низкоуглеродистой или нержавеющей стали. Длина винтовой резьбы может быть полной (с постоянным шагом) или частичной с гладкими участками (с переменным шагом), благодаря чему шурупы надежно удерживаются в древесине. По виду покрытия шурупы бывают с цинкованием и с желтым пассивированием. Как правило, шурупы по дереву имеют узкий заостренный наконечник. Он нужен для того, чтобы отверстие, которое образуется во время вкручивания, было очень плотным и не деформировалось. А по форме шляпки можно выбрать шурупы с потайной, тарельчатой, шестигранной и утопающей головкой. Особое внимание уделим крупным саморезам с шестигранными головками, их еще называют глухарями. Соединения деревянных элементов с таким креплением отличает высокая прочность. Шуруп можно дополнительно усилить подкладной шайбой, чтобы избежать продавливания древесины.
Помимо более распространенных односемейных и малоэтажных домов, в наши дни даже во многих странах можно встретить впечатляющие и дерзкообразные современные деревянные строения, поскольку на нескольких рисунках 8 представить. Чувство экологически чистых и возобновляемых материалов, а также простота производства и транспортировки из прошлого добавляет новые мотивы для строительства деревянных зданий.
Как обсуждалось во вводном разделе этой главы, современные конструкции должны быть пластичными и рассеивающими, особенно когда они построены в сейсмических зонах.Несмотря на то, что деревянные конструкции однозначно признаны способными отвечать таким требованиям, при условии, что они являются регулярными, гиперстатическими и связаны с пластичными крепежными элементами (что также подтверждается в таблице 2), большинство вопросов, связанных с оценкой и моделированием этой способности, все еще обсуждаются.
3.1. Важнейшая роль соединений
Соединения в современных деревянных зданиях — это металлические устройства, обеспечивающие передачу усилий между элементами конструкции. Их конструкция является наиболее стратегической частью структурного проекта деревянного сооружения, поскольку от характеристик соединений (тип, механические свойства, геометрия, расстояние, методы сборки) могут сильно зависеть жесткость, прочность, пластичность и энергия. рассеяние всей структуры.
Несмотря на то, что некоторые конструктивные типологии (такие, как устойчивые к моменту системы деревянных каркасов, системы панелей для резки древесины и системы с перекрестными ламинированными панелями) указаны как особенно способные обеспечить пластичное поведение при экстремальных динамических боковых нагрузках [43], это конструкция соединения, которая в конечном итоге определяет ресурсы пластичности деревянной конструкции. Фактически, один и тот же структурный тип может быть приписан различным классам пластичности в зависимости от способности его соединений к вращательной пластичности, что может быть выведено, например, из классификации, проведенной EC8, как указано в таблице 2.
Наиболее распространенными соединениями в современных деревянных конструкциях являются механические крепежные детали дюбельного типа (гвозди, шурупы, дюбели, болты, заклепки), которые глубоко проникают в древесину для переноса нагрузки с помощью деревянного подшипника и изгиба соединителя. Штекерные соединители могут использоваться отдельно или в сочетании с металлическими предварительно просверленными пластинами. Ожидается, что соединения со штифтами типа дюбеля будут пластичными из-за крайне нелинейного поведения древесины при напряжениях врезания и пластического поведения стальных крепежных элементов при изгибе [44].Тем не менее, на них иногда могут влиять внезапные и хрупкие разрушения, такие как сдвиг в блоке или расщепление [45]. Десять различных типов отказов (шесть в одном сдвиге и четыре в двойном сдвиге) рассматриваются европейскими стандартами для деревянных соединений типа дюбеля [46].
На самом деле, деревянные элементы и металлические соединения играют разные роли в сейсмическом поведении деревянных конструкций. Поскольку механизмы разрушения деревянных элементов в основном хрупкие, деревянные элементы должны оставаться в диапазоне упругости даже при очень сильных событиях.Задача удовлетворения спроса на пластичность возложена на металлические соединения, которые, как ожидается, будут выдерживать большие неупругие деформации, предотвращая разрушение. На пластичное поведение соединений влияют как металлические крепежные элементы (которые могут вести себя пластично или хрупко, в зависимости от того, достигнута пластификация или нет), так и прочностные свойства древесины, окружающей зону соединения (направление зерна относительно направление нагрузки).
Предотвращение хрупкого разрушения может гарантировать адекватную пластичность всей конструкции.Соблюдение некоторых правил иерархии прочности может обеспечить пластичное поведение деревянных конструкций. В частности, важно, чтобы крепежные элементы были более слабыми, чем деревянные элементы, которые они соединяют, чтобы они могли производить и рассеивать большое количество энергии. С другой стороны, чем слабее крепеж, тем ниже их несущая способность. Способ обеспечения как адекватной пластичности, так и достаточной площади опоры заключается в использовании большого количества слабых крепежных элементов. Некоторые альтернативы для улучшения характеристик соединений типа дюбелей обсуждаются в работе.[47].
Хотя пластические свойства одних стальных крепежных деталей хорошо известны и их поведение при циклических нагрузках легко предсказуемо, нелинейный отклик сборки металлических соединителей и окружающей древесины довольно сложно предсказать, поскольку он не является перекрестным свойство участка (как для железобетона). Фактически, поведение деревянных соединений зависит от нескольких факторов, некоторые из которых хорошо известны как прочностные свойства и геометрическая конфигурация используемых материалов, другие подвержены неопределенности как влиянию соседних металлических крепежных элементов или взаимодействию между крепежными элементами и окружающей древесиной.Это затрудняет разработку аналитической модели, способной воспроизвести поведение соединения с древесиной.
Большинство признаков, показанных на рисунке 7 и обсужденных в разделе 2.2.1, характеризуют поведение соединений из металлической древесины, что можно сделать из рисунков 9a и 9b, которые предоставляют качественные примеры типичного гистерезисного поведения клепаных и заколоченных соединений, соответственно. В частности, было обнаружено, что два явления типичны для гистерезисного отклика стальных соединений типа дюбелей, как это было упомянуто в [6].[43]. Первым из них является эффект сжатия , подразумевающий различные гистерезисные кривые от первого до последующих циклов нагрузки (см. Рисунок 9). Второй, называемый памятью материала , обусловлен зависимостью кривой проскальзывания нагрузки от истории нагрузки. Оба эти явления могут влиять на пластичное поведение структуры древесины.
Рисунок 9.
Типичные гистерезисные кривые циклических испытаний металлических (а) клепаных соединений и (б) прибитых соединений.
3.1.1. Влияние эффекта сжатия на пластичное поведение соединений
Эффект сжатия является очень типичной характеристикой гистерезисного поведения соединений дюбельного типа, влияющих как на исторические, так и на современные деревянные конструкции. Механические причины этого обсуждались в разделе 2.2.1. Этот эффект был задокументирован многими авторами, например [48–52]. В частности, было обнаружено, что для данного уровня смещения самое высокое сопротивление и самая широкая петля гистерезиса были достигнуты при первом цикле нагрузки, в то время как последующие циклы были сужены и достигли более низкого сопротивления, стабилизируясь после примерно трех циклов (см. Фиг.9а и 9б).Стабилизация сжатой кривой после трех циклов также упоминается в UNI EN 12512: 2006 [30]. Из-за уменьшения площади петли гистерезиса эффект сжатия может фактически отвечать за уменьшение количества рассеиваемой энергии, хотя соединения по-прежнему способны демонстрировать высокие значения пластичности.
При моделировании механического поведения стального соединения типа дюбеля для целей численного анализа следует учитывать эффект сжатия. Обсуждение того, как это можно сделать, можно найти в работе.[34], даже если стандартные модели, охватывающие эффект сжатия и разрушения прочности и жесткости, еще не доступны, что также не предусмотрено в кодексах практики.
3.1.2. Влияние истории нагрузки на пластичное поведение соединений
Из результатов, доступных в литературе, ясно, что гистерезисное поведение деревянных соединений может сильно зависеть от типа проведенного экспериментального испытания (динамическое, статическое, циклическое, монотонное). ) а также на принятом протоколе испытаний.С другой стороны, хотя существуют различные протоколы для проведения испытаний на циклическую нагрузку на деревянные конструкции, например, EN 12512 [30], стандарт CUREE-Caltech [33], протокол UBC [11], консенсус по наилучшему протоколу для предполагается, что стандарт еще не достигнут [48]. Однако многие экспериментальные данные подтвердили влияние истории нагрузки на конечные результаты.
Это было показано в работе. [48], что соединение обычно достигает своей максимальной нагрузки при меньшей деформации при циклических нагрузках, чем при монотонной нагрузке.В работе [50], было обнаружено, что коэффициент пластичности стенок сдвига древесины может быть намного выше при измерении в статических монотонных испытаниях, чем при измерении в динамических испытаниях. Эти экспериментальные данные указывают на то, что результаты монотонных испытаний имеют тенденцию переоценивать поведение нагрузок-деформаций соединений в отношении испытаний на циклическую нагрузку, и поэтому их следует избегать при определении сейсмических характеристик деревянных зданий [48]. Динамические испытания, безусловно, являются наилучшим выбором для определения поведения деревянных конструкций при сейсмических или ветровых нагрузках, также с учетом того факта, что режимы разрушения могут сильно различаться в статических и динамических условиях [50].Однако было обнаружено, что петли гистерезиса, полученные в ходе динамических испытаний, очень чувствительны к принятому протоколу [11, 53].
Зависимость пластичности соединения от экспериментального испытания также может быть выведена из Таблицы 3, где собраны экспериментально полученные коэффициенты пластичности для различных соединений древесины [44, 48, 51–52, 54]. Таблица 3 может быть весьма удобной, чтобы иметь представление о пластичной способности деревянных соединений, хотя приведенные здесь данные следует сравнивать с осторожностью, учитывая различные образцы, схемы испытаний и протоколы нагружения, используемые в тестах (читатель упоминается документы приведены в таблице для каких-либо подробностей).
Тип соединения | Деревянные элементы | Нагрузка | µ |
---|---|---|---|
Стальные пластины с болтами [48] | Элементы Glulam | Однотонные | 3–4,8 |
Циклический | 2.53–2.91 | ||
Стальные пластины с заклепками из глулама [48] | Члены Glulam | Монотонный | 16.4–20.4 |
Циклический | 10.74–15,96 | ||
Стальные кронштейны с гвоздями или винтами [51, 52] | Панели XLam | Циклические (параллельно зерну) | 3,01–6,36 |
Циклические (перпендикулярно зерну) | 3,82–4,83 | ||
Дюбельные [44] | XLam-элементы | Циклические | 1.3–2.1 |
Дюбельные, усиленные саморезами [44] | Циклические | 3.4–7.3 | |
Стальные пластины с прорезями и гвоздями [54] | клеящие элементы | Однотонные (параллельно зерну) | 11.9–31,9 |
Таблица 3.
Пластичность соединений, полученная в результате экспериментальных испытаний.
Примечание: XLam, с перекрестным ламинированием.
Аналогично, коэффициенты пластичности современных деревянных стен приведены в Таблице 4, как это получено из ссылок. [50, 55, 56]. Данные, собранные в Таблице 4, указывают на хорошую пластичность, которая может быть продемонстрирована современными деревянными конструкциями, хотя для сравнения данных, собранных в Таблице 4, снова необходимо соблюдать осторожность. Наконец, можно также отметить, что кривые гистерезиса, полученные при испытании современных деревянных стен с прибитыми гвоздями соединениями, имеют признаки, аналогичные показанным на рис. 7, что можно сделать, например, из диаграмм, приведенных в [6].[50–51, 55, 57].
Испытательные образцы | Соединения | Загрузка | µ |
---|---|---|---|
Стены с оболочкой из фанеры [50] | Плиты для гвоздей | Монотонные | 14 |
циклический | 9,3 | ||
Стены среза, обшитые OSB [50] | Плиты для гвоздей | Однотонные | 13.2 |
Циклический | 7,7 | ||
Стены с перекрестным ламинированием [55] | Прижимы и кронштейны с гвоздями, винтами и заклепками | Циклический | 3.65–7.54 |
Срезные стенки, обшитые OSB [56] | Стальные пригвожденные кронштейны и прижимы | Однотонные | 3,5–4,9 |
циклические | 3–4,2 | ||
Стенки с ножнами, обшитые GF [56] | Стальные гвоздевые кронштейны и удерживающие вниз | Циклический | 3.4 |
Стенки среза, обшитые OSB и GF [56] | Стальные скобки и прижимные планки | Монотонная | 5.67 |
Таблица 4.
Пластичность современных деревянных стен, полученных в результате экспериментальных испытаний ,
Примечание: OSB, ориентированная стружечная плита; GF, гипсовое волокно.
3.2. Нелинейный динамический анализ для прогнозирования сейсмического отклика деревянных конструкций
Нелинейный анализ временной истории (NLTHA) является наиболее полной процедурой, допускаемой сейсмическими кодами для проектирования сейсмостойких конструкций.Он включает в себя полное исследование истории времени при различных совместимых со спектром движениях грунта. Несмотря на свой потенциал, NLTHA все еще недостаточно используется, вероятно, из-за трудностей, с которыми оно, несомненно, связано, и даже из-за некоторых недостатков действующего кодекса практики [58]. Такой анализ, однако, является лучшим способом прогнозирования фактических сейсмических характеристик конструкций, состоящих из упругих и неупругих частей. Действующие кодексы практики позволяют проводить нелинейный анализ для расчета внутренних сил в элементах деревянных конструкций, при условии, что они способны перераспределять внутренние силы через соединения адекватной пластичности [46].
При реализации NLTHA эффективный подход к моделированию структуры состоит в том, чтобы отделить критические зоны, в которых пластичное поведение NLTHA может проявляться от других частей конструкции, которые, как ожидается, будут упруго деформироваться даже в конечном состоянии. Это типичная процедура, которой придерживаются, например, в железобетонных рамах, где пластиковые петли обычно сосредоточены на обоих концах колонн и балок, в то время как превентивная пластификация балок гарантируется некоторыми правилами иерархии прочности на основе кода.Аналогичная процедура может быть использована для деревянных конструкций, принимая деревянные элементы в качестве чисто упругих элементов и соединений в качестве нелинейных связей. Чтобы соответствовать современной философии проектирования емкости, деревянные элементы должны быть перепроектированы так, чтобы их хрупкое разрушение следовало за пластификацией соединений (правило иерархии прочности).
3.2.1. Моделирование деревянных соединений
Использование экспериментальных данных часто является наилучшим способом получения механического поведения деревянного соединения при динамических нагрузках.В литературе было предложено несколько эмпирических моделей, которые обычно включают параметры, откалиброванные по экспериментальным данным, см., Например, [34, 43, 59, 60]. Однако следует отметить, что извлечение общей модели из экспериментальных кривых нагрузки-смещения требует осторожности из-за возможной зависимости как от истории нагрузки, так и от схемы испытаний [34, 61, 62], как уже обсуждалось в разделе 3.1.2. Более подробные микромодели были также предложены другими авторами, например [62–64], которые исследовали нелинейный отклик металлических крепежных элементов и окружающей древесины с помощью трехмерного анализа методом конечных элементов.Все еще требуя некоторой эмпирической корректировки параметров, такие сложные модели обычно подразумевают значительное ухудшение вычислительных усилий, которое может стать неустойчивым для целей, отличных от целей передовых исследований.
Как уже отмечалось в разделе 3.1, поведение деревянных соединений зависит от нескольких факторов, некоторые из которых трудно предсказать. Это затрудняет разработку аналитической модели, способной воспроизвести поведение соединения с древесиной.Как бы трудно это ни было, найти подходящую модель для гистерезисного поведения соединений важно для изучения динамического отклика деревянной конструкции, по крайней мере, когда необходимо выполнить нелинейный анализ.
Коммерческие пакеты для структурного анализа обычно позволяют выбирать между различными механическими моделями для реализации поведения нелинейных связей. Например, сводная гистерезисная модель, предоставляемая широко используемым SAP2000 для нелинейных связей (NLLINK), изображена на рисунке 10.Чтобы принять модель, подобную этой, необходимо правильно назначить набор параметров для воспроизведения всех типичных явлений, экспериментально обнаруженных в соединениях древесины, таких как жесткость и снижение прочности, а также эффекты защемления.
Рисунок 10.
Мультилинейная модель пластикового шарнира для нелинейных связей (NLLINK) в SAP2000.
СОЕДИНЕНИЙ В ЛЕСАХ СТРУКТУР — PDF Free Download
6 УСТАНОВЛЕННЫХ ПОСТ И ПЬЕР-ДОМОВ
Переоснащение постов и причалов 71 6 УСТАНОВКА ПОСТ И ПЬЕР ДОМОВ Джеймсом Э. Расселом, П.Е. 72 Модернизация почтовых и пирсовых домов Модернизация почтовых и пирсовых домов 73 УСТАНОВКА ПОЧТОВЫХ И ПИР-ДОМОВ This
Пост и Балка Строительство
Пост и строительство балки A Презентация Канадского совета по лесам Канадский совет Conseil Wood canadien Council du bois Ранние поселенцы представили концепцию пост-балочного строительства в Северной Америке
Типичные ошибки в конструкции фермы
В современном конкурентном мире ферм производители компонентов всегда ищут способы создания более эффективных конструкций ферм.Время от времени необходимо менять конструкции фермы для герметизации.
Глава 6 КРОВЕЛЬНО-ПОТОЛОЧНЫЕ СИСТЕМЫ
Глава 6 КРОВЕЛЬНО-ПОТОЛОЧНЫЕ СИСТЕМЫ Системы кровельно-потолочных систем — это основная тема данной главы. IRC допускает холоднодеформированное стальное обрамление для системы крыши и потолка, но это не обсуждается;
ГОРИЗОНТАЛЬНАЯ УСТАНОВКА
THERMO / SOLAR Žiar s.r.o. РУКОВОДСТВО ПО УСТАНОВКЕ ПОДДЕРЖИВАЮЩИХ ОСНОВАТЕЛЬНЫХ РАМ ГОРИЗОНТАЛЬНАЯ УСТАНОВКА Техническое чередование зарезервировано A1410 1 12/2014 СТРАНИЦА Информация о монтаже 3 Монтаж, плоская крыша
Патио Чехлы / Навесы
Крышки для патио / Навесы для навесов для строителей для домовладельцев Зачем мне нужно разрешение? ВЫ ЗНАЛИ? Как владелец-застройщик, вы несете ответственность за регистрацию такого разрешения.Если ваша работа выполняется
Пожарная безопасность в деревянных зданиях
Пожарная безопасность в деревянных зданиях Введение Распространение огня в зданиях представляет собой риск для безопасности жизнедеятельности, для которого строительные нормы (Англия и Уэльс 1,2, Шотландия 3 и Северная Ирландия 4) нацелены на
ВОСТОЧНАЯ ЛАЙМА ВЫСШАЯ ШКОЛА
Обзор: 1971 N 1966 GYM 1966 CLASSROOM WING 1966 AUD.1971 GYM 1998 1998 БАССЕЙН ВОСТОЧНАЯ ЛАЙМСКАЯ СРЕДНЯЯ ШКОЛА Оригинал 1966 Здание: Оригинальная Восточная школа Лайма была построена в 1966 году и была составлена
УСТАНОВКА БАЙНОВОГО ОКНА
УСТАНОВКА ОТКРЫТОГО ОКНА Установка эркера Эти инструкции относятся к замене существующего эркера или замене прямого окна новым эркером в проеме
Анализ структурной целостности
Анализ структурной целостности 1.КОНЦЕНТРАЦИЯ НАПРЯЖЕНИЙ Игорь Кокчаров 1.1. НАПРЯЖЕНИЯ И КОНЦЕНТРАТОРЫ 1.1.1. Напряжение Прилагаемая внешняя сила F вызывает внутренние силы в несущей конструкции. Внутренние силы
Стабильность. Безопасность. Целостность.
Стабильность. Безопасность. Целостность. PN #MBHPT Foundation Supportworks предоставляет качественные системы спиральных свай как для нового строительства, так и для модернизации. Система спиральных свай 288 О фундаментальных работах поддержки
G ВЫКОР ПАЛУБНЫЙ ЗАЩИТНИК
G VYCOR DECK PROTECTOR Руководство для подрядчика по самоклеящемуся мерцанию ПАЛУБЫ И ДЕТАЛИ Для более долговечных колод установите защитную панель Grace Vycor.ОТ ПРОИЗВОДИТЕЛЕЙ G Ice & Water Shield What Self-Adhed
Lighthouse Engineering, L.L.C.
Зарегистрированная инженерная фирма (F: 9334) Телефон: 214-577-1077 Факс: 214-224-0549 Веб-сайт: www.lighthouseeng.com Электронная почта: [email protected] Четверг, 4 сентября 2014 г. TO: Наш клиент RE: Начальная инженерия
СТАНДАРТНАЯ ОТКРЫТАЯ КРЫШКА ПАТИО
СТАНДАРТ ОТКРЫТЫЙ ОТДЕЛ ПАТИО КРЫШКИ СТРОИТЕЛЬСТВО И БЕЗОПАСНОСТЬ 201 E.ЛА ХАБРА БЛВД. LA HABRA, CA 90631 62-90-9710 Позвоните, прежде чем копать 1-800-227-2600 ПОЖАЛУЙСТА, ОБРАТИТЕ ВНИМАНИЕ: Эта информация Бюллетень доступен для помощи
CPA Стальная рама для шпилек Страница 1 из 11
CPA Стальной каркасный каркас Страница 1 из 11 СТАЛЬНОЕ ОБРАЗОВАНИЕ СТАЛЬНЫХ ШТАБОВ Общие требования Городской отдел Пало-Альто (CPA) Инспекция зданий 285 Hamilton Ave. Запрос на инспекцию: 650 329-2496 Building Division IVR #
ГЛАВА 6 ТИПЫ СТРОИТЕЛЬСТВА
ГЛАВА 6 ВИДЫ СТРОИТЕЛЬСТВА РАЗДЕЛ 601 ОБЩИЕ СВЕДЕНИЯ 601.1 Область применения. Положения настоящей главы должны регулировать классификацию типа конструкции по материалам и огнестойкости ее элементов и использованию
Открытые палубы и подъезды
Открытые палубы и подъезды Руководства по строительству домовладельцев Зачем мне нужно разрешение? ВЫ ЗНАЛИ? Как владелец-застройщик, вы несете ответственность за регистрацию такого разрешения. Если ваша работа выполняется
ЧАСТЬ 1 ОБЩАЯ ЧАСТЬ 1.1 РАЗДЕЛ ВКЛЮЧАЕТ
J-1 Раздел 09110 Длинная спецификация формы РАМКИ ИЗ МЕТАЛЛА ВНУТРЕННЕГО МЕТАЛЛА Этот раздел включает в себя легкий, обычно толщиной 0,036 дюйма (0,9 мм) или более легкий, неосевой несущий металлический каркас, включая
Решения для подключения
Соединительные решения DESIGN BUILD SYSTEM Соединительные решения для холоднокатаной стальной конструкции Соответствует; AS / NZS 4600: 2005 AISI S100: 2007 AS / NZ 1397 ASTM A653 ПРОЕКТИРОВАНИЕ И СТРОИТЕЛЬНАЯ СИСТЕМА FRAMECAD Конструкция
Инструкция по установке
Выпущены инструкции по установке: 10 марта 2004 г. Система палуб и перил GeoDeck (ICC-ES Legacy Report No.21 71, бывший отчет BOCA № 21 71) Руководство по проектированию и установке Поздравляем! У вас
Что такое сейсмическая модернизация?
Что такое сейсмическая модернизация? Сейсмическая модернизация Сейсмическая модернизация обеспечивает существующие конструкции большей устойчивостью к сейсмической активности из-за землетрясений. В зданиях этот процесс обычно включает
TopSky DLG Руководство по установке
TopSky DLG Руководство по установке Внимание: поскольку после затвердевания составных материалов на поверхности будет присутствовать аммиачная радужная оболочка, которая впоследствии будет влиять на прочность склеивания.Пожалуйста, отполируйте наждачной бумагой
Терминология жилых гаражных ворот
A Проникновение воздуха: утечка или прохождение воздуха через дверную систему. Анодирование: твердая неагрессивная оксидная пленка на поверхности алюминия. Астрагал: сжимаемое или деформируемое уплотнение, расположенное на дне
Каркасная конструкция
Каркасные деревянные конструкции Введение Проектирование и детализация Что такое древесина? Режимы отказов История деревянного каркасного строительства Формы деревянного каркасного строительства Живые и мертвые грузы Ветровые нагрузки Кровельные работы
RF- / TIMBER Pro: Дизайн древесины в соотв. в ЕС 5 и SIA 265
RF- / TIMBER Pro проектирует деревянные элементы и комплекты элементов на основе процедур проектирования в соответствии с:
- EN 1995-1-1 (включая национальные приложения; см. Ниже)
- SIA 265: 2012 + SIA 265 ‑ C1: 2012
- DIN 1052: 2008‑12
В дополнение к расчетам напряжений RF-TIMBER Pro выполняет анализ устойчивости элементов в соответствии с методом эквивалентного элемента или анализом второго порядка, а также расчет предельного состояния работоспособности и огнестойкости.Кроме того, модуль предоставляет возможность автоматической оптимизации поперечного сечения.
-
Особенности
- Полная интеграция в RFEM / RSTAB с импортом всей необходимой информации и внутренних сил
- Для проектирования в соответствии с EN 1995-1-1 доступны следующие национальные приложения:
- Обширная библиотека материалов в соответствии со стандартами EN, SIA и DIN
- Проектирование круглых, прямоугольных и составных сечений, определенных пользователем (также гибридов)
- Специальная классификация структуры в классах обслуживания (SECL) и действия в классах продолжительности нагрузки (LDC)
- Дизайн членов и наборы членов
- Анализ устойчивости по методу эквивалентного члена или анализ второго порядка
- Определение руководящих внутренних сил
- Значок, информирующий об удачном или неудачном дизайне
- Визуализация критерия проектирования на модели RFEM / RSTAB
- Автоматическая оптимизация сечения
- Списки запчастей и количество съемки
- Экспорт данных в MS Excel
- Бесплатная установка классов огнестойкости и скорости обугливания, а также свободный выбор сторон обугливания
- Огнестойкость конструкций в выбранном стандарте в соответствии с:
- EN 1995-1-2
- SIA 265: 2012 + SIA 265-C1: 2012
- DIN 4102-22: 2004
- Импорт длины изгиба из дополнительного модуля RF-STABILITY / RSBUCK
- Конструкция конических элементов в соответствии с предварительно определенным углом нарезки
- Расчет гребней и анализ поперечных напряжений растяжения для определенных гребней
- Дизайн изогнутых элементов и наборов элементов
-
Ввод
После открытия модуля необходимо выбрать элементы или наборы элементов, варианты нагрузки, сочетания нагрузок или результатов для конструкций предельного состояния и предельного состояния работоспособности, а также для расчета огнестойкости.Материалы из RFEM / RSTAB предустановлены и могут быть настроены в RF- / TIMBER Pro. Свойства материала, указанные в соответствующем стандарте, включены в библиотеку материалов.
После проверки поперечного сечения модуль определяет классы продолжительности нагрузки (LDC) и классы обслуживания (SECL). Их можно назначить выбранным нагрузкам и элементам.
Комбинированные сечения могут состоять из различных материалов. Дополнительный модуль RF- / TIMBER Pro выполняет расчеты с учетом смещения нейтральной оси (в случае полужестких поперечных сечений).Анализ деформации требует эталонных длин соответствующих элементов и наборов элементов. Кроме того, вы можете определить конкретное направление отклонения, предкамеру и тип луча.
-
Дизайн
Расчет сопротивления поперечного сечения анализирует растяжение и сжатие вдоль зерна, изгиб, изгиб и растяжение / сжатие, а также прочность на сдвиг из-за сдвигающего усилия с кручением и без него.Проекты выполняются на уровне значений проектных напряжений.
Конструкция конструктивных элементов, подверженных риску изгиба или изгиба в боковом кручении, выполняется в соответствии с методом эквивалентного элемента и учитывает систематическое осевое сжатие, изгиб с силой сжатия и без нее, а также изгиб и растяжение. Прогиб внутренних пролетов и консолей определяется в характерных и квазипостоянных расчетных ситуациях.
Отдельные кейсы для проектирования позволяют гибко и стабильно анализировать элементы, наборы элементов и нагрузки.В случае конусообразных элементов угол резания до зерна учитывается в области изгибающего напряжения и изгибающего сжатия. Если определено ребро, модуль дополнительно выполняет проект ребра.
-
Результаты
После расчета модуль отображает результаты в четко организованных таблицах результатов.Каждое промежуточное значение перечислено, делая проекты прозрачными. Результаты перечислены в зависимости от варианта загрузки, сечения, члена и набора элементов.
Если анализ не удается, соответствующие сечения могут быть изменены в процессе оптимизации. Также можно перенести оптимизированные сечения в RFEM / RSTAB для выполнения нового расчета.
Расчетный коэффициент представлен разными цветами в модели RFEM / RSTAB. Таким образом, вы можете быстро распознать критические или увеличенные участки поперечного сечения.Диаграммы результатов членов и наборы членов позволяют проводить целевую оценку.
В дополнение к входным данным и результатам, включая детали дизайна, показанные в таблицах, вы можете добавить любую графику в отчет распечатки. Таким образом, понятная и четко оформленная документация гарантируется.
1.Q: вы производитель или торговая компания?
A: Мы являемся одним из крупнейших производителей в Китае и специализируемся на услугах по изготовлению металлоконструкций на заказ.
Мы квалифицированы во всех видах угловых кронштейнов, изготовлении конусных скоб и имеем опыт работы с
различными материалами, такими как углеродистая сталь, медь, алюминий, нержавеющая сталь и т. Д. расположен? Как я могу побывать там?
A: Наш завод находится в городе Цанчжоу, провинция Хэбэй, Китай. Приглашаем всех наших клиентов, как дома, так и за рубежом,
!
3.Вопрос: что материал вашей продукции?
A: Материал — углеродистая сталь Q235, мягкая сталь, нержавеющая сталь (Sus 304.316. 201 301. 430 и т. Д.).
Медь, латунь, алюминий (А1 6061,6016,6063 и т. Д.) И т. Д.
4.В: Максимальная производительность вашего фатори?
A: 100 тонн каждый день.
5. Как установить после назначения товара?
A: Мы предоставим инструкции по установке и видео для вас. Техники будут отправлены, чтобы помочь вам
, если это необходимо.Однако визовый сбор, авиабилеты, проживание, заработная плата будут предоставлены покупателями.
6.Q: Как ваша фабрика занимается контролем качества?
A: качество является приоритетом. Сотрудники ONIC всегда придают большое значение контролю качества с самого начала
и до самого конца. Наша фабрика получила ISO9001, Rohs.
7. В: Могу ли я получить образцы?
A: Мы рады предложить вам образцы.
8.Вопрос: Когда вы делаете доставку?
A: 3-5 рабочих дней после получения вашего платежа.
9. В: Каково ваше послепродажное обслуживание?
A: Мы предоставляем послепродажное обслуживание и предлагаем 100% гарантию на нашу продукцию.
10. В: Можете ли вы сделать пометки на деталях.
Да, если требуются этикетки, мы можем маркировать этикетки на деталях. у нас есть лазерная маркировочная машина.
11.В: Как обеспечить сохранность денег, качество продукции и своевременную доставку грузов?
A: Мы принимаем и приветствуем клиента размещаем заказ на обеспечение торговли в ALibaba.
Alibaba станет третьей обеспеченной стороной, которая решит проблемы клиента в бизнесе.
Нажмите http://tradeassurance.alibaba.com/, чтобы узнать больше о «Заказе на обеспечение торговли»