Трехфазный двигатель в однофазной сети: 3 схемы
Владелец гаража или частного дома часто нуждается в работе станка либо наждака с асинхронным электродвигателем для обработки металлов, древесины. А в наличии имеется только напряжение 220 вольт.
Подключение трехфазного двигателя к однофазной сети в этом случае можно выполнить несколькими способами. Здесь я буду рассматривать три доступные и распространенные схемы конденсаторного запуска.
Все они не раз опробованы на личном опыте.
Содержание статьи
Сразу предупреждаю опытных электриков, открывших эту статью: материал подготовлен для начинающих мастеров. Поэтому он объемный. Если нет желания все читать, то вот вам краткие советы:
- используйте схему треугольник, предварительно проверив исправность двигателя;
- выбирайте рабочие конденсаторы из расчета 70 микрофарад на 1 киловатт мощности, а пусковые увеличьте в 2-3 раза;
- в процессе наладки откорректируйте емкости по величине нагрузки и нагреву обмоток;
- не забывайте соблюдать меры безопасности с электрическим током и инструментом.
Все остальное рекомендую новичкам внимательно прочитать и осмыслить в той последовательности, как я излагаю.
На своем опыте не раз убеждался, что первоначальная проверка технического состояния оборудования позволяет исключить многие ошибки, экономит общее время работы, значительно предотвращает травмы и аварии.
Трехфазный асинхронный двигатель: на что обратить внимание до его подключения
За небольшим исключением асинхронник нам достается в неизвестном состоянии. Очень редко на него есть свидетельство о проверке и заверенная гарантия от электролаборатории.
Даже в этом случае я рекомендую убедиться в его исправности лично.
Механическое состояние статора и ротора: что может мешать работе двигателя
Неподвижный статор состоит из трех частей: среднего корпуса и двух боковых крышек, стянутых шпильками. Обращайте внимание на зазор между ними, усилие стягивания гайками.

Корпус должен быть плотно сжат. Внутри него на подшипниках вращается ротор. Попробуйте покрутить его от руки. Оцените приложенное усилие: как работают подшипники, нет ли биений.
Без должного опыта мелкие дефекты таким способом не выявить, но случай грубого заклинивания сразу проявится. Послушайте шумы: нет ли при вращении задевания ротором элементов статора.
После включения двигателя на холостой ход и непродолжительной работы еще раз послушайте звуки вращающихся частей.
В идеале лучше разобрать статор, оценить визуально его состояние, промыть загрязненные подшипники ротора и полностью заменить их смазку.

Электрические характеристики статорных обмоток: как проверять схему сборки
Все основные параметры электродвигателя производитель указывает на специальной табличке, прикрепленной к корпусу статора.

Этим заводским характеристикам можно верить только в том случае, если вы уверены, что после завода никто из электриков не изменил схему подключения обмоток и не сделал непроизвольных ошибок. А случаи такие мне попадались.
Да и сама табличка со временем может стереться или потеряться. Поэтому предлагаю разобраться с технологией раскрутки ротора.
Для понимания электротехнических процессов, протекающих внутри статора двигателя, удобно представить его в виде обыкновенного тороидального трансформатора, когда на кольцевом сердечнике магнитопроводе симметрично расположены три равнозначные обмотки.
Схема статора собрана внутри закрытого корпуса, из которого выведены только шесть концов обмоток.

Они маркируются и подключаются на закрытом крышкой клеммнике для сборки по схеме звезды или треугольника типовой перестановкой перемычек.

На правой части картинки показана сборка треугольника. Схему расположения перемычек для звезды публикую ниже.

Электрические методики проверки схемы сборки обмоток
Но не все так однозначно, как может показаться на первый взгляд. Существует целый ряд двигателей с отклонением от этих правил.
Например, производитель может выпускать электродвигатели не универсального использования, а для работы в конкретных условиях с подключением обмоток по схеме звезды.
В этом случае он может собрать три конца обмоток внутри корпуса статора, а наружу вывести только четыре провода для подключения к потенциалам фаз и нуля.
Монтаж этих концов обычно выполняется в районе задней крышки. Для переключения обмоток на треугольник потребуется вскрывать корпус и делать дополнительные выводы.
Это не сложная работа. Но она требует бережного обращения с лаковым покрытием медного провода. При изгибах проволоки возможно его повреждение, что повлечет нарушение изоляции и создаст межвитковое замыкание.
После перемонтажа схемы рекомендую дополнительно покрывать внешние слои обмоток лаком, а затем хорошо просушить их до окончательной сборки теплым воздухом.
Что делать, если маркировка выводов отсутствует
На старом асинхронном двигателе провода могут быть сняты с клемм, а заводская маркировка утеряна. Попадались и такие экземпляры, когда из корпуса просто торчали наружу шесть концов. Их необходимо вызвонить и промаркировать.
Работу выполняем в два этапа:
- Проверяем принадлежность концов обмоткам.
- Определяем и маркируем каждый вывод.
На первом этапе работаем мультиметром или тестером в режиме омметра. Ставим первый щуп произвольно на один вывод, а вторым — ищем из пяти оставшихся проводов тот, где прибор покажет закороченную цепь. Помечаем оба конца, как принадлежащие к одной обмотке.

С оставшимися четырьмя выводами поступаем аналогично. В итоге мы получаем три пары проводов от каждой обмотки.
Как найти конец и начало обмотки: 2 способа
Можно вести поиск с помощью вольтметра:
- и батарейки;
- или источника пониженного переменного напряжения.
Первый метод основан на том, что импульс тока, поданный на одну из трех обмоток, трансформируется в двух остальных.
Для этого на произвольно выбранный конец К1 подключают минус батарейки, а плюсовым контактом кратковременно касаются второго вывода. По цепи проходит импульсный бросок тока и наводит ЭДС в двух других обмотках.

С помощью вольтметра постоянного тока по отклонению стрелки проверяется полярность наведенного напряжения в каждой обмотке. Началом помечается тот вывод, который соответствует положительному потенциалу (стрелка прибора движется вправо при замыкании и влево при размыкании цепи батарейкой).
После маркировки концов рекомендую сделать контрольную проверку правильности их нанесения подачей импульса на другую обмотку.
Второй способ основан на использовании источника переменного напряжения безопасной величины 12-36 вольт.

Концы двух любых обмоток замыкают в параллель и на них подключают вольтметр. На оставшуюся третью обмотку подают переменное напряжение и смотрят на показание прибора.
Если наведенная ЭДС соответствует поданному напряжению, то эти две обмотки включены в одной полярности. Одинаково помечают их начала и концы. При нулевом показании вольтметра концы одной из обмоток необходимо вывернуть и сделать повторный замер.
Затем одну из промаркированных обмоток, например №3, соединяют с первой и подключают к ним вольтметр. На освободившуюся №2 снова подают переменное напряжение. По величине ЭДС на вольтметре судят о полярности выводов.
После окончания маркировки делают контрольный замер для проверки выполненной работы.
Когда нет под рукой понижающего трансформатора или безопасного блока питания, то опытный электрик с правом самостоятельной работы под напряжением, может воспользоваться обыкновенной лампой накаливания ватт на 60.
Ее используют в качестве делителя напряжения, подключая последовательно к одной обмотке электродвигателя. На собранную цепочку подают 220 вольт, а на двух других измеряют напряжение вольтметром.
Такая проверка опасна. Ею не стоит заниматься необученным людям: можно легко получить электрическую травму.
Как оценить состояние изоляции обмоток
Отдельная часть блогеров умалчивает о необходимости этой проверки. Они считают, что без нее можно обойтись в большинстве случаев.

Однако до включения двигателя под напряжение я рекомендую:
- взять мегаомметр с выходным напряжением на 1000 вольт;
- проверить им изоляцию между каждой отдельной обмоткой и корпусом, а также между всеми обмотками;
- если она выше 0,5 Мом, то считать стартер исправным. В противном случае придется его ремонтировать. Довольно часто помогает просушка сухим и теплым воздухом.
Проверку изоляции электродвигателя мегаомметром необходимо обязательно проводить до его подключения под нагрузку. Однако она не способна выявить повреждения диэлектрического слоя, вызывающие межвитковые замыкания обмотки.
При сборке двигателя каждая катушка статора мотается медным проводом одной длины и сечения. Поэтому все они имеют строго одинаковое резистивное сопротивление.
Если в обмотке возникло межвитковое замыкание, то его, как правило, можно определить замером мультиметра в режиме омметра. Для этого внимательно анализируйте и сравнивайте активные сопротивления каждой цепочки.
Как проверяют магнитное поле статора на заводе
При подаче напряжения на исправный электродвигатель создается вращающееся магнитное поле. Его визуально оценивают с помощью металлического шарика, который повторяет вращение.

Я не призываю вас повторять такой опыт. Пример этот призван помочь понять, что работа асинхронного двигателя основана на взаимодействии магнитных полей статора и ротора.
Только правильное подключение обмоток обеспечивает вращение шарика или ротора.
Мощность электродвигателя и диаметр провода обмотки
Это две взаимосвязанных величины потому, что поперечное сечение проводника выбирается по способности противостоять нагреву от протекающего по нему току.
Чем толще провод, тем большую мощность можно передавать по нему с допустимым нагревом.
Если на двигателе отсутствует табличка, то о его мощности можно судить по двум признакам:
- Диаметру провода обмотки.
- Габаритам сердечника магнитопровода.
После вскрытия крышки статора проанализируйте их визуально.
Подключение трехфазного двигателя к однофазной сети по схеме звезды
Начну с предупреждения: даже опытные электрики во время работы допускают ошибки, которые называются «человеческий фактор». Что уж говорить про домашних мастеров…
Поэтому рекомендую в обязательном порядке подачу напряжения на собранную схему выполнять только через отдельный автоматический выключатель SF, правильно подобранный по нагрузке. Он спасет жизнь и здоровье.
Схема подключения звезды показана на картинке.

Концы обмоток собраны в одну точку горизонтальными перемычками внутри клеммной коробки. На нее никакие внешние провода не подключены.
Фаза (через автоматический выключатель) и ноль бытовой проводки подаются на две разные клеммы начал обмоток. К свободной клемме (на рисунке Н2) подключена параллельная цепочка из двух конденсаторов: Cp — рабочий, Сп — пусковой.
Рабочий конденсатор соединен второй обкладкой жестко с фазным проводом, а пусковой — через дополнительный выключатель SA.
При запуске электродвигателя ротор необходимо раскрутить из состояния покоя. Он преодолевает усилия трения подшипников, противодействия среды. На этот период требуется повысить величину магнитного потока статора.
Делается это за счет увеличения тока через дополнительную цепочку пускового конденсатора. После выхода ротора на рабочий режим его нужно отключить. Иначе пусковой ток перегреет обмотку двигателя.
Выполнять отключение цепочки пуска простым переключателем не всегда удобно. Для автоматизации этого процесса используют схемы с реле или пускателями, работающими по времени.
Среди мастеров самодельщиков пользуется популярностью кнопка пуска от советских стиральных машин активаторного типа. У нее встроено два контакта, один из которых после включения отключается автоматически с задержкой: то, что надо в нашем случае.
Если приглядитесь внимательно на принцип подачи однофазного напряжения, то увидите, что 220 вольт приложены к двум последовательно подключенным обмоткам. Их общее электрическое сопротивление складывается, ослабляя величину протекающего тока.
Подключение трехфазного двигателя к однофазной сети по схеме звезды используется для маломощных устройств, отличается повышенными потерями энергии до 50% от трехфазной системы питания.
Схема треугольник: преимущества и недостатки
Подключение электродвигателя по этому способу предполагает использование той же внешней цепочки, что и у звезды. Фаза, ноль и средняя точка нижних обкладок конденсаторов монтируются последовательно на три перемычки клеммной коробки.

За счет переключения выводов обмоток по схеме треугольника подводимое напряжение 220 создает больший ток в каждой обмотке, чем у звезды. Здесь меньшие потери энергии, выше КПД.
Подключение двигателя по схеме треугольника в однофазной сети позволяет полезно использовать до 70-80% потребляемой мощности.
Для формирования фазосдвигающей цепочки здесь требуется использовать меньшую емкость рабочих и пусковых конденсаторов.
При включении двигатель он может начать вращение не в ту сторону, которая требуется. Нужно сделать ему реверс.
Для этого достаточно в обеих схемах (звезды или треугольника) поменять местами приходящие от сети провода на клеммной колодке. Ток потечет по обмотке в противоположную сторону. Ротор изменит направление вращения.
Как подобрать конденсаторы: 3 важных критерия
Трехфазный двигатель создает вращающееся магнитное поле статора за счет равномерного прохождения синусоид токов по каждой обмотке, разнесенных в пространстве на 120 градусов.
В однофазной сети такой возможности нет. Если подключить одно напряжение на все 3 обмотки сразу, то вращения не будет — магнитные поля уравновесятся. Поэтому на одну часть схемы подают напряжение, как есть, а на другую сдвигают ток по углу вращения конденсаторами.
Сложение двух магнитных полей создает импульс моментов, раскручивающих ротор.
От характеристик конденсаторов (величины емкости и допустимого напряжения) зависит работоспособность создаваемой схемы.
Для маломощных двигателей с легким запуском на холостом ходу в отдельных случаях допустимо обойтись только рабочими конденсаторами. Всем остальным движкам потребуется пусковой блок.
Обращаю внимание на три важных параметра:
- емкость;
- допустимое рабочее напряжение;
- тип конструкции.
Как подобрать конденсаторы по емкости и напряжению
Существуют эмпиреческие формулы, позволяющие выполнять простой расчет по величине номинального тока и напряжения.

Однако люди в формулах часто путаются. Поэтому при контроле расчета рекомендую учесть, что для мощности в 1 киловатт требуется подбирать емкость на 70 микрофарад для рабочей цепочки. Зависимость линейная. Смело ей пользуйтесь.
Доверять всем этим методикам можно и нужно, но теоретические расчеты необходимо проверить на практике. Конкретная конструкция двигателя и прилагаемые нагрузки на него всегда требуют корректировок.
Конденсаторы рассчитываются под максимальное значение тока, допустимого по условиям нагрева провода. При этом расходуется много электроэнергии.
Если же электродвигатель преодолевает нагрузки меньшей величины, то емкость конденсаторов желательно снизить. Делают это опытным путем при наладке, замеряя и сравнивая токи в каждой фазе амперметром.
Чаще всего для пуска асинхронного электродвигателя используют металлобумажные конденсаторы.

Они хорошо работают, но обладают низкими номиналами. При сборке в конденсаторную батарею получается довольно габаритная конструкция, что не всегда удобно даже для стационарного станка.
Сейчас
промышленностью выпускаются малогабаритны электролитические конденсаторы, приспособленные для работы с электродвигателями на переменном токе.

Их внутреннее устройство изоляционных материалов приспособлено для работы под разным напряжением. Для рабочей цепочки оно составляет не менее 450 вольт.
У пусковой схемы с условиями кратковременного включения под нагрузку оно уменьшено до 330 за счет снижения толщины диэлектрического слоя. Эти конденсаторы меньше по габаритам.
Это важное условие следует хорошо понимать и применять на практике. Иначе конденсаторы на 330 вольт взорвутся при длительной работе.
Скорее всего для конкретного двигателя одним конденсатором не отделаться. Потребуется собирать батарею, используя последовательное и параллельное соединение их.

При параллельном подключении общая емкость суммируется, а напряжение не меняется.
Последовательное соединение конденсаторов уменьшает общую емкость и делит приложенное напряжение на части между ними.
Какие типы конденсаторов можно использовать
Номинальное напряжение сети 220 вольт — это действующая величина. Ее амплитудное значение составляет 310 вольт. Поэтому минимальный предел для кратковременной работы при запуске выбран 330 V.
Запас напряжения до 450 V для рабочих конденсаторов учитывает броски и импульсы, которые создаются в сети. Занижать его нельзя, а использование емкостей с большим резервом значительно увеличивает габариты батареи, что нерационально.
Для фазосдвигающей цепочки допустимо использовать полярные электролитические конденсаторы, которые созданы для протекания тока только в одну сторону. Схема их включения должна содержать токоограничивающий резистор в несколько Ом.

Без его использования они быстро выходят из строя.
Перед установкой любого конденсатора необходимо проверить его реальную емкость мультиметром, а не полагаться на заводскую маркировку. Особенно это актуально для электролитов: они зачастую преждевременно высыхают.
Схема сдвига фаз токов конденсаторами и дросселем: что мне не понравилось
Это третья обещанная в заголовке конструкция, которую я реализовал два десятка лет назад, проверил в работе, а потом забросил. Она позволяет использовать до 90% трехфазной мощности двигателя, но обладает недостатками. О них позже.
Собирал я преобразователь трехфазного напряжения на мощность 1 киловатт.

В его состав входят:
- дроссель с индуктивным сопротивлением на 140 Ом;
- конденсаторная батарея на 80 и 40 микрофарад;
- регулируемый реостат на 140 Ом с мощностью 1000 ватт.
Одна фаза работает обычным способом. Вторая с конденсатором сдвигает ток вперед на 90 градусов по ходу вращения электромагнитного поля, а третья с дросселем формирует его отставание на такой же угол.
В создании фазосдвигающего магнитного момента участвуют токи всех трех фаз статора.
Корпус дросселя пришлось собирать механической конструкцией из дерева на пружинах с резьбовой настройкой воздушного зазора для наладки его характеристик.

Конструкция реостата — это вообще «жесть». Сейчас его можно собрать из мощных сопротивлений, купленных в Китае.

Мне даже приходила мысль использовать водяной реостат.
Но я от нее отказался: уж слишком опасная конструкция. Просто намотал на асбестовой трубе толстую стальную проволоку для проведения эксперимента, положил ее на кирпичи.
Когда запустил двигатель циркулярной пилы, то он работал нормально, выдерживал приложенные нагрузки, нормально распиливал довольно толстые колодки.
Все бы хорошо, но счетчик намотал двойную норму: этот преобразователь берет такую же мощность на себя, как и двигатель. Дроссель и проволока неплохо нагрелись.
Из-за высокого потребления электроэнергии, низкой безопасности, сложной конструкции я не рекомендую такой преобразователь.
Меры безопасности при подключении трехфазного двигателя: напоминание
Сначала я повторюсь с рекомендацией использовать все подключения только через отдельный автоматический выключатель. Это очень важно.
Работы по наладке схемы под напряжением должны выполнять обученные люди. Знание ТБ — обязательное условие.
Использование разделительного трансформатора значительно сокращает риск попасть под действие тока. Поэтому используйте его при любых наладочных работах под напряжением.
Специальный инструмент электрика с диэлектрическими рукоятками не только облегчает работу, но и сохраняет здоровье. Не пренебрегайте им!
В заключение рекомендую посмотреть полезное видео владельца Сергея Герасимчука по подключению трехфазного двигателя к однофазной сети.
Если остались вопросы или заметили неточности, то воспользуйтесь разделом комментариев.
Как подключить электродвигатель 380В на 220В
В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».
Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?
Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.
Конструктивные особенности
Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).
Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).
Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.
Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.
При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.
Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.
Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.
Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.
Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.
Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.
Как подключить электродвигатель с 380 на 220В без конденсатора?
Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.
Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.
Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.
Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.
По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.
Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.
Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.
Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.
Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.
Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.
Схема №1.
Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.
В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).
Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.
Схема №2.
Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.
Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.
Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.
Делается это следующим образом:
- Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
При реализации рассмотренных схем стоит учесть ряд особенностей:
- Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
- Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.
Как подключить через конденсаторы
Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).
Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».
Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).
Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.
Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.
Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.
Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:
- Рабочие конденсаторы подключаются параллельно;
- Номинальное напряжение должно быть не меньше 300 Вольт;
- Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
- Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.
Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.
Расчет емкости должен производиться с учетом номинальной мощности ЭД. Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.
Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.
Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.
Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.
Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:
- Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
- Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
- Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.
С конденсатором дополнительная упрощенная — для схемы звезда.
С конденсатором дополнительная упрощенная — для схемы треугольник.
Как подключить с реверсом
В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.
Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй — с возможностью переброса с «нулевой» на «фазную» обмотку.
Для реализации схемы можно использовать переключатель с двумя положениями.
К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному — провод от конденсатора.
Как подключить по схеме «звезда-треугольник» (с тремя проводами)
В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.
Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.
Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.
Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.
К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.
Далее обмотка последнего пускателя (К2) объединяется с оставшимися фазам для создания схемы «треугольник».
Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».
Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.
Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.
Принцип работы схемы прост:
- При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
- Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
- Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.
Итоги
Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.
Как подключить электродвигатель с 380 на 220: способы и схемы
Многими практиками доказана эффективность трехфазных асинхронных электродвигателей. Однако для ее использования необходимо подключение трехфазного питания, которое, увы, присутствует далеко не у каждого в доме. Но если вы задаетесь вопросом, как подключить электродвигатель с 380 на 220 В, мы рассмотрим возможные варианты включения трехфазных электрических машин в домашних условиях.
Общие правила
Перед началом включения обязательно проверяется величина напряжения, на которое рассчитан электродвигатель – если подключить разность потенциалов больше указанной, обмотки перегреются, если низкое, он не запустится.
Как правило, на асинхронных машинах указывается сразу два параметра, реже только один:
- 660/380 В;
- 380/220 В;
- 220/127 В.
Номинал определяется совместно со схемой соединения обмоток – звезда или треугольник. В первом случае обмотки имеют общую точку, а фазные провода соединяются с остальными тремя выводами катушек. Во втором, конец одной обмотки присоединяется к началу следующей таким образом, что образуется замкнутый контур. Одни агрегаты включаются только звездой, другие, треугольником, а некоторые можно самостоятельно подключать любым из способов, обе характеристики указаны на шильде электродвигателя.
Для треугольника используется меньшее напряжение, а для звезды большее из двух указанных. Отличие в том, что трехфазные двигатели, соединенные звездой, будут иметь плавный пуск, а треугольник сможет выдать большую мощность.
Физически подключение трехфазного электродвигателя в однофазную сеть не принесет никакого результата – вращение вала так и не произойдет. Причина этого в отсутствии переменного электрического поля, обеспечивающего попеременное воздействие на ротор. Поэтому проблему можно решить, обеспечив смещение электрического напряжения и тока в фазных обмотках. Чтобы получить желаемый результат от одной фазы, можно дополнительно включить в цепь конденсатор, который обеспечит отставание напряжения до -90º.
Однако полноценного смещения напряжения в обмотках статора добиться не получится. Хоть на электродвигатель подается и номинальное напряжение, КПД составит всего 30 – 50%, что будет определяться схемой соединения обмоток асинхронного электродвигателя.
Не включайте электродвигатель без нагрузки. Так как он не предназначен для такого режима, электрическая машина быстро выйдет со строя. Минимизируйте холостой ход насколько это возможно.
Способы и схемы подключения
В зависимости от типа используемой нагрузки для электродвигателя, его конструктивных особенностей и характеристик, желаемого результата могут использоваться различные схемы подключения. Чаще всего, чтобы подключить трехфазный агрегат в качестве бытовой однофазной нагрузки используются конденсаторы, но их количество и способ введения в работу зависят от многих параметров. Поэтому далее мы рассмотрим различные варианты схем подключения электродвигателей.
Без конденсаторов
Чтобы подключить асинхронный электродвигатель к сети 220В вовсе не обязательно использовать емкостной элемент. Благодаря развитию полупроводниковых ключей и схем с их использованием вы можете избежать ненужных потерь мощности. Для этого применяется транзисторный или динисторный ключ.

Приведенная выше схема предназначена для пуска электродвигателей с малыми оборотами до 1500 об/мин и относительно небольшой мощностью.
Работа схемы производится следующим образом:
- при подаче напряжения на ввод провода подключаются к двум точкам мотора;
- напряжение на третью точку треугольника подается через времязадающую R-C цепочку;
- магазин сопротивлений R1 и R2 регулирует интервал сдвига за счет перемещения бегунка;
- после насыщения конденсатора в цепочке динистор VS1 пропускает сигнал на открытие симистора VS2.
Если же подключение электрического агрегата предусматривает большую пусковую нагрузку и требует работы на высоких оборотах – до 3000об/мин, то необходимо применять аналогичную схему электронного ключа с двумя симисторами и отдельными времязадающими элементами для каждого из них. Но обмотки электрической машины будут подключаться по схеме разомкнутой звезды. Работа схемы аналогична предыдущей:

С конденсаторами
Использование емкостных элементов, чтобы подключить электродвигатель, является наиболее распространенным способом. Для этого используются два конденсатора, один из которых пусковой, а второй рабочий. Пусковой вводится кратковременно, дополнительная емкость позволяет увеличить сдвиг напряжения в соответствующей обмотке и создать большее усилие.

Как видите из рисунка выше, на электродвигатель подается однофазное напряжение между точками L и N. Асинхронный двигатель АД подключается к ним двумя обмотками, а к третей та же фаза подключается через контакты кнопочного переключателя SA1 и SA2, коммутирующие параллельно включенные конденсаторы C1 и C2.
Включение асинхронного электродвигателя происходит по такому принципу:
- Нажатием кнопки Пуск приводятся в движение две пары контактов — SA1 и SA2, после чего в обмотках начинает протекать электроток;
- После отпускания кнопки контакт SA2 остается замкнутым, подавая фазу со смещением через конденсатор C1, а SA1 размыкается, выводя из цепи пусковой конденсатор C2;
- Пусковые характеристики возвращаются к номинальным и двигатель работает в штатном режиме.
Но при таком подключении асинхронного двигателя в сеть 220В будет обеспечиваться вращение ротора лишь в одну сторону. Поэтому для выполнения реверсивных движений понадобится полностью перебирать точки подключения или использовать другой способ.
С реверсом
Для некоторых технологических операций требуется осуществлять прямое и обратное вращение вала электродвигателя, поэтому подключение должно менять последовательность чередования напряжения на обмотках. Разумеется, что вручную выполнять подобные операции нецелесообразно, особенно, когда смена направления производится по нескольку раз в час.
Поэтому осуществление реверса электродвигателя, гораздо эффективнее сделать через коммутатор с двумя парами контактов, имеющих противоположную логику. Это может быть тумблер или поворотный переключатель, включаемый в схему вместо обычной кнопки:

Как видите на рисунке, принцип подключения ничем не отличается от рассмотренной схемы с конденсатором с той лишь разницей, что переключатель SA имеет два устойчивых положения. В одном случае он подает напряжение на конденсаторы с фазы, во втором с нулевого проводника. Поэтому чередование обмоток меняется на противоположное простым переключением тумблера.
Используя пускатель
Если в работе электродвигатель создает большую пусковую и рабочую нагрузку, то лучше подключить его через магнитный пускатель или контактор. Который обеспечит надежную коммутацию и последующую защиту электрической машины от аварийных ситуаций.

Как видите на схеме, включение осуществляется за счет нажатия кнопки Пуск, которая замыкает цепь управления катушкой пускателя и подает напряжение на пусковой конденсатор Спуск. При протекании тока по катушке пускателя К1 происходит замыкание ее контактов К1.1 и К1.2. Первые предназначены для замыкания питающей линии электродвигателя. Вторые шунтируют кнопку Пуск, которая возвращается в отключенное состояние и размыкает цепь питания пускового конденсатора.
Как подбирать конденсаторы?
Если вы собрались подключить электродвигатель, то выбор конденсатора осуществляется по таким принципам:
- Номинальное напряжение выбирается из соотношения 1,15 от подаваемого на мотор. Если брат больше, это увеличит стоимость установки и ее габариты. Если емкость рассчитать впритык, конденсатор перегреется и перегорит.
- Тип конденсатора – наиболее распространенные модели – бумажные, но они обладают большими габаритами. Поэтому выгоднее приобретать полипропиленовые. От электролитических лучше отказаться.
- Чтобы выбрать емкость пускового и рабочего конденсатора, необходимо воспользоваться таблицей соответствия по мощности электродвигателя:
Таблица: определение емкости конденсаторов
Мощность трехфазного электродвигателя, кВт | 0,4 | 0,6 | 0,8 | 1,1 | 1,5 | 2,2 |
Минимальная емкость конденсатора Ср , мкф | 40 | 60 | 80 | 100 | 150 | 230 |
Емкость пускового конденсатора (Сп), мкф | 80 | 120 | 160 | 200 | 250 | 300 |
Если нужной вам мощности в таблице нет, можно воспользоваться расчетными формулами:
Сраб = (2800*I)/U — для включения трехфазного двигателя звездой
Cраб = (4800*I)/U — для включения трехфазного двигателя треугольником
где I – величина ток, протекающего через обмотки электродвигателя, а U – напряжение сети. Чтобы узнать емкость пускового конденсатора для подключения трехфазного агрегата, необходимо полученную величину рабочего умножить на два.
Видео в помощь
О подключении трехфазных электродвигателей в сеть 220в: схема подключения
Промышленность выпускает электродвигатели, предназначенные для работы в различных условиях, в том числе для сети 220 вольт. Однако у многих людей сохранились трёхфазные асинхронные электродвигатели 380В (люди старшего поколения помнят такое явление, как «принёс домой с работы»). Такие аппараты нельзя включать в розетку. Для использования таких приборов в домашних условиях и подключении вместо 380 220 вольт схема сборки и подключения электромашины нуждаются в доработке – переключении обмоток и подключении конденсаторов.

Подключение промышленного двигателя к однофазной сети
Принцип действия трёхфазного асинхронного электродвигателя
Обмотки в статоре такой машины намотаны со сдвигом в 120°. При подаче на них трёхфазного напряжения появляется вращающееся магнитное поле, приводящее в движение ротор электромашины.
При подключении к трёхфазной электромашине к сети однофазного напряжения 220 вольт вместо вращающегося поля появляется пульсирующее. Для приведения в движение электромотора в однофазной сети пульсирующее поле преобразовывается во вращающееся.
Справка. В аппаратах, изготовленных для работы в сети 220 вольт, для этого служат пусковые обмотки или особенности конструкции статора.
При включении в сеть двигателя 380 на 220 к нему подключаются фазосдвигающие ёмкости. Запуск трехфазного двигателя с 220 без конденсаторов возможен приведением во вращение ротора. Это создаст сдвиг магнитного поля, и электромашина, потеряв в мощности, продолжит работать. Так включают циркулярки и другие подобные механизмы с низким пусковым моментом.
Начала и концы обмоток
В каждой обмотке электромашины есть начало и конец. Они выбираются условно, независимо от направления намотки, однако должны соответствовать направлению намотки остальных катушек.
Важно! В электросхемах начало катушек отмечается точкой.
Соединение катушек при подключении трехфазного двигателя к сети 220В
Большинство электродвигателей предназначены для работы с линейным напряжением 0,4кВ. В этих машинах обмотки включены “звездой”. Это значит, что концы обмоток соединены вместе, а к началам подключается 3 фазы. Напряжение на каждой обмотке составляет 220В.
При включении в сеть с линейным напряжением 220В применяется соединение “треугольник”. При этом начало следующей обмотки подключается к концу предыдущей.
Некоторые аппараты мощностью более 30 кВт изготавливаются для сети с линейным напряжением 660В. В таких аппаратах при включении в сеть 0,4кВ обмотки подключаются “треугольником”.
Как подключить трехфазный электродвигатель в сеть 220в
Обмотки трёхфазной машины при включении от 220 вольт соединяются различными способами. Синхронная скорость и скорость вращения от этого не меняются.
Соединение звездой
При включении трехфазного электродвигателя на 220 вольт проще всего применить имеющееся соединение “звезда”. К двум выводам подаётся питание 220В, а к третьему оно подаётся через фазосдвигающую ёмкость. Однако при этом на каждой из катушек оказывается не 220В, а 110, что приведёт к падению мощности до 30%. Поэтому такое подключение на практике не применяется.
Соединение треугольником
Самая распространенная схема подключения трехфазного электродвигателя к сети 220 – треугольник. При этом питание подаётся на одну сторону треугольника, а параллельно другой стороне подключаются конденсаторы. Реверс осуществляется изменением стороны треугольника, на которой находится ёмкость.

Подключение звездой и треугольником
Изменение схемы подключения обмоток трёхфазного электродвигателя на треугольник
Самое сложное при подключении трёхфазной электромашины к бытовой сети 220 вольт – соединить её обмотки треугольником.
Изменение соединений на клеммнике
При подключении к сети 220 вольт проще всего эта операция выполняется, если провода подключены к клеммнику. На нём в два ряда установлены шесть болтов.
Соединение производится попарно, кусочками проволоки или перемычками, идущими в комплекте с двигателем.

Соединение выводов на клеммнике звездой и треугольником
Сборка треугольника, согласно маркировке выводов
Если клеммник отсутствует, а на выводах есть маркировка, то задача также простая. Обмотки маркируются С1-С4, С2-С5, С3-С6, где С1, С2, С3 – начала обмоток, и концы соединяются С1-С6, С2-С4, С3-С5.
Интересно. В старых электродвигателях импортного производства вывода маркируются A-X, B-Y, C-Z, а современные обозначения: U1-U2, V1-V2, W1-W2.
Что делать, если есть только три вывода
Сложнее всего собрать схему подключения со «звезды» на «треугольник» в электромашинах, соединение обмоток которых находится внутри корпуса. Эта операция выполняется при полной разборке электромашины. Для переключения обмоток на треугольник необходимо:
- разобрать электродвигатель;
- найти внутри место соединения обмоток и рассоединить его;
- к концам обмоток припаять отрезки гибких проводов и вывести их наружу;
- собрать аппарат;
- попарно вызвонить вывода катушек;
- соединить старый вывод одной катушки с новым проводом следующей;
- операцию повторить ещё два раза.
Соединение при отсутствии маркировки
Если маркировки нет, а из корпуса выходит шесть концов, то необходимо определить начало и конец каждой обмотки:
- Тестером попарно определить вывода, относящиеся к каждой обмотке. Пометить пары;
- В одной из пар выбрать провод. Отметить его как начало обмотки, оставшийся отмечается как конец;
- Соединить отмеченную обмотку последовательно с другой парой проводов;
- Подключить к соединённым катушкам напряжение ~12-36В;
- Замерить вольтметром напряжение на оставшейся паре. Вместо вольтметра можно использовать контрольную лампочку;
- Статор с обмотками представляет собой трансформатор и при согласованном соединении вольтметр покажет наличие напряжения. В этом случае во второй паре проводов отмечаются начало и конец катушки. При отсутствии напряжения изменить полярность подключения одной из пар выводов и повторить п.п. 4-5;
- Соединить одну из отмеченных пар с оставшейся неразмеченной и повторить п.п. 3-6.
После определения начала и концов во всех обмотках, они соединяются треугольником.
Подключение фазосдвигающих конденсаторов
Для нормальной работы электромашине необходимы пусковые и рабочие ёмкости.
Выбор номинала рабочего конденсатора
Есть разные формулы для определения необходимой ёмкости рабочего конденсатора, учитывающие номинальный ток, cosφ и другие параметры, но чаще всего просто берётся 7мкФ на 100Вт или 70мкФ на 1кВт мощности.
После сборки схемы целесообразно включить последовательно с машиной амперметр и, увеличивая и уменьшая рабочую ёмкость, добиться минимальной величины показаний прибора.
Важно! Рабочие конденсаторы применяются для переменного напряжения не меньше 300В.
Выбор и подключение пусковых конденсаторов
Пуск с использованием только рабочих фазосдвигающих конденсаторов длительный, а при значительном моменте на валу машины невозможен. Для облегчения пуска и уменьшения его длительности на период разгона электромашины параллельно рабочим подключаются пусковые ёмкости. Они выбираются в 2-3 раза больше, чем рабочие. Номинальное напряжение также более 300В. Пуск происходит несколько секунд, поэтому допускается подсоединение электролитических конденсаторов.
Как подключить трехфазный двигатель на 220 вольт с использованием пусковых конденсаторов
Схема запуска должна предусматривать отключение пусковых ёмкостей после пуска электромашины. Если этого не сделать, то машина начнёт перегреваться. Для этого есть разные способы:
- Отключение пусковых ёмкостей с помощью реле времени. Задержка отключения составляет несколько секунд и подбирается опытным путём;
- Применение универсального переключателя (ключа УП) на 3 положения. Его диаграмма включения собирается таким образом, чтобы в первом положении все контакты были разомкнуты, во втором замыкались два: питание и пусковые конденсаторы, а в третьем – только питание. Для реверсивной работы используется ключ на 5 положений;
- Специальная кнопочная станция – ПНВС (пускатель нажимной с пусковым контактом). В этих конструкциях есть 3 контакта. При нажатии “Пуск” замыкаются все, но крайние фиксируются, а средний нужен, чтобы запустить машину, и отпадает после отпускания кнопки. Нажатие на кнопку “Стоп” отключает зафиксированные контакты.

Кнопка ПНВС
Как переделать схему вращения в реверсивную
Для реверса электродвигателя необходимо изменить направление вращения магнитного поля. При запуске мотора без конденсаторов ему предварительно придаётся вручную необходимое направление вращения, а в конденсаторной схеме производится переключение ёмкости с нулевого провода на фазный. Это производится тумблером, переключателем или пускателями.

Реверс конденсаторного двигателя
Важно! Пусковые конденсаторы подсоединяются параллельно рабочим и переключаются при изменении направления вращения одновременно с ними.
Электронные преобразователи бытового напряжения в промышленное трёхфазное 380В
Эти трёхфазные инверторы применяются для использования в бытовой сети трехфазных двигателей. Электродвигатели подключаются напрямую к выходу аппарата.
Необходимая мощность преобразователя выбирается, в зависимости от тока электрической машины. Есть три режима работы таких приборов:
- Пусковой. Допускает кратковременное (до 5 секунд) двукратное превышение мощности. Этого достаточно для запуска электродвигателя;
- Рабочий, или номинальный;
- Перегрузочный. Допускает в течение получаса превышение тока в 1,3 раза.
Преимущества инвертора 220 в 380:
- подключение не переделанных трёхфазных электромашин на 220 вольт;
- получение полной мощности и момента электромашины без потерь;
- экономия электроэнергии;
- плавный запуск и регулировка оборотов.

Инвертор 220 в 380
Несмотря на появление электронных преобразователей, конденсаторные схемы включения трёхфазных электродвигателей продолжают применяться в быту и небольших мастерских.
Видео
Как подключить электродвигатель 380в на 220в
Бывает, что в руки попадает трехфазный электродвигатель. Именно из таких двигателей изготавливают самодельные циркулярные пилы, наждачные станки и разного рода измельчители. В общем, хороший хозяин знает, что можно с ним сделать. Но вот беда, трехфазная сеть в частных домах встречается очень редко, а провести ее не всегда бывает возможным. Но есть несколько способов подключить такой мотор к сети 220в.
Следует понимать, что мощность двигателя при таком подключении, как бы вы ни старались — заметно упадет. Так, подключение «треугольником» использует только 70% мощности двигателя, а «звездой» и того меньше — всего 50%.
В связи с этим двигатель желательно иметь по мощнее. Подключая двигатель, будьте предельно осторожны. Делайте все не спеша. Меняя схему, отключайте электропитание и разряжайте конденсатор электролампой. Работы производите как минимум вдвоем.
Итак, в любой схеме подключения используются конденсаторы. По сути, они выполняют роль третьей фазы. Благодаря ему, фаза к которой подключен один вывод конденсатора, сдвигается ровно настолько, сколько необходимо для имитации третьей фазы. Притом что для работы двигателя используется одна емкость (рабочая), а для запуска, еще одна (пусковая) в параллель с рабочей. Хотя не всегда это необходимо.
Например, для газонокосилки с ножом в виде заточенного полотна, достаточно будет агрегата 1 кВт и конденсаторов только рабочих, без надобности емкостей для запуска. Обусловлено это тем, что двигатель при запуске работает на холостом ходу и ему хватает энергии раскрутить вал.
Если взять циркулярную пилу, вытяжку или другое устройство, которое дает первоначальную нагрузку на вал, то тут без дополнительных банок конденсаторов для запуска не обойтись. Кто-то может сказать: «а почему не подсоединить максимум емкости, чтобы мало не было?» Но не все так просто. При таком подключении мотор будет сильно перегреваться и может выйти из строя. Не стоит рисковать оборудованием.
Какой бы емкости ни были конденсаторы, их рабочее напряжение должно быть не ниже 400в, в противном случае они долго не проработают и могут взорваться.
Рассмотрим сначала как подключается трехфазный двигатель в сеть 380в.
Трехфазные двигатели бывают, как с тремя выводами — для подключения только на «звезду», так и с шестью соединениями, с возможностью выбора схемы ― звезда или треугольник. Классическую схему можно видеть на рисунке. Здесь на рисунке слева изображено подключение звездой. На фото справа, показано как это выглядит на реальном брне мотора.
Видно, что для этого необходимо установить специальные перемычки на нужные вывода. Эти перемычки идут в комплекте с двигателем. В случае когда имеется только 3 вывода, то соединение в звезду уже сделано внутри корпуса мотора. В таком случае изменить схему соединения обмоток попросту невозможно.
Некоторые говорят, что так делали для того, чтобы рабочие не воровали агрегаты по домам для своих нужд. Как бы там ни было, такие варианты двигателей, можно с успехом использовать для гаражных целей, но мощность их будет заметно ниже, чем соединенных треугольником.
Схема подключения 3-х фазного двигателя в сеть 220в соединенного звездой.
Как видно, напряжение 220в распределяется на две последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.
Максимальной мощности двигателя на 380в в сети 220в можно достичь, только используя соединение в треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Схема подключения такого электродвигателя изображено на рисунке 1.
Рис. 1
На рис.2, изображено брно с клеммой на 6 выводов для возможности подключения треугольником. На три получившихся вывода, подается: фаза, ноль и один вывод конденсатора. От того, куда будет подключен второй вывод конденсатора ― фаза или ноль, зависит направление вращения электродвигателя.
На фото: электродвигатель только с рабочими конденсаторами без емкостей для запуска.
Если на вал будет начальная нагрузка, необходимо использовать конденсаторы для запуска. Они соединяются в параллель с рабочими, используя кнопку или переключатель на момент включения. Как только двигатель наберет максимальные обороты, емкости для запуска должны быть отключены от рабочих. Если это кнопка, просто отпускаем ее, а если выключатель, то отключаем. Дальше двигатель использует только рабочие конденсаторы. Такое соединение изображено на фото.
Как подобрать конденсаторы для трехфазного двигателя, используя его в сети 220в.
Первое, что нужно знать ― конденсаторы должны быть неполярными, то есть не электролитическими. Лучше всего использовать емкости марки ― МБГО. Их с успехом использовали в СССР и в наше время. Они прекрасно выдерживают напряжение, скачки тока и разрушающее воздействие окружающей среды.
Также они имеют проушины для крепления, помогающие без проблем расположить их в любой точке корпуса аппарата. К сожалению, достать их сейчас проблематично, но существует множество других современных конденсаторов ничем не хуже первых. Главное, чтобы, как уже говорилось выше, рабочее напряжение их не было меньше 400в.
Расчет конденсаторов. Емкость рабочего конденсатора.
Чтобы не обращаться к длинным формулам и мучить свой мозг, есть простой способ расчета конденсатора для двигателя на 380в. На каждые 100 Вт (0,1 кВт) берется — 7 мкФ. Например, если двигатель 1 кВт, то рассчитываем так: 7 * 10 = 70 мкФ. Такую емкость в одной банке найти крайне трудно, да и дорого. Поэтому чаще всего емкости соединяют в параллель, набирая нужную емкость.
Емкость пускового конденсатора.
Это значение берется из расчета в 2-3 раза больше, чем емкость рабочего конденсатора. Следует учитывать, что эта емкость берется в сумме с рабочей, то есть для двигателя 1 кВт рабочая равна 70 мкФ, умножаем ее на 2 или 3, и получаем необходимое значение. Это 70-140 мкФ дополнительной емкости — пусковой. В момент включения она соединяется с рабочей и в сумме получается — 140-210 мкФ.
Особенности подбора конденсаторов.
Конденсаторы как рабочие, так и пусковые можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.
Кроме указанного выше типа конденсатора — МБГО, можно использовать тип — МБГЧ, МБГП, КГБ и тому подобные.
Подведём итоги.
Иногда возникает необходимость менять направление вращения электродвигателя. Такая возможность есть и у двигателей на 380в, используемых в однофазной сети. Для этого нужно сделать так, чтобы конец конденсатора, подключенный к отдельной обмотке, оставался неразрывным, а другой мог перебрасываться с одной обмотки, где подключен «ноль», к другой где — «фаза».
Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».
Более подробно можно увидеть на рисунке.
Существуют электродвигатели трехфазные на 220в. У них каждая обмотка рассчитана на 127в и при подключении в однофазную сеть по схеме «треугольник» ― двигатель просто сгорит. Чтобы этого не произошло, такой мотор в однофазную сеть следует подключать только по схеме — «звезда».
Схема подключения трехфазного электродвигателя 380в на 220в через конденсатор
Бывает, что в руки попадает трехфазный электродвигатель. Именно из таких двигателей изготавливают самодельные циркулярные пилы, наждачные станки и разного рода измельчители. В общем, хороший хозяин знает, что можно с ним сделать. Но вот беда, трехфазная сеть в частных домах встречается очень редко, а провести ее не всегда бывает возможным. Но есть несколько способов подключить такой мотор к сети 220в.
Следует понимать, что мощность двигателя при таком подключении, как бы вы ни старались — заметно упадет. Так, подключение «треугольником» использует только 70% мощности двигателя, а «звездой» и того меньше — всего 50%.
В связи с этим двигатель желательно иметь помощнее.
Важно! Подключая двигатель, будьте предельно осторожны. Делайте все не спеша. Меняя схему, отключайте электропитание и разряжайте конденсатор электролампой. Работы производите как минимум вдвоем.
Итак, в любой схеме подключения используются конденсаторы. По сути, они выполняют роль третьей фазы. Благодаря ему, фаза к которой подключен один вывод конденсатора, сдвигается ровно настолько, сколько необходимо для имитации третьей фазы. Притом что для работы двигателя используется одна емкость (рабочая), а для запуска, еще одна (пусковая) в параллель с рабочей. Хотя не всегда это необходимо.
Например, для газонокосилки с ножом в виде заточенного полотна, достаточно будет агрегата 1 кВт и конденсаторов только рабочих, без надобности емкостей для запуска. Обусловлено это тем, что двигатель при запуске работает на холостом ходу и ему хватает энергии раскрутить вал.
Если взять циркулярную пилу, вытяжку или другое устройство, которое дает первоначальную нагрузку на вал, то тут без дополнительных банок конденсаторов для запуска не обойтись. Кто-то может сказать: «а почему не подсоединить максимум емкости, чтобы мало не было?» Но не все так просто. При таком подключении мотор будет сильно перегреваться и может выйти из строя. Не стоит рисковать оборудованием.
Важно! Какой бы емкости ни были конденсаторы, их рабочее напряжение должно быть не ниже 400в, в противном случае они долго не проработают и могут взорваться.
Рассмотрим сначала как подключается трехфазный двигатель в сеть 380в.
Трехфазные двигатели бывают, как с тремя выводами — для подключения только на «звезду», так и с шестью соединениями, с возможностью выбора схемы ― звезда или треугольник. Классическую схему можно видеть на рисунке. Здесь на рисунке слева изображено подключение звездой. На фото справа, показано как это выглядит на реальном брне мотора.
Видно, что для этого необходимо установить специальные перемычки на нужные вывода. Эти перемычки идут в комплекте с двигателем. В случае когда имеется только 3 вывода, то соединение в звезду уже сделано внутри корпуса мотора. В таком случае изменить схему соединения обмоток попросту невозможно.
Некоторые говорят, что так делали для того, чтобы рабочие не воровали агрегаты по домам для своих нужд. Как бы там ни было, такие варианты двигателей, можно с успехом использовать для гаражных целей, но мощность их будет заметно ниже, чем соединенных треугольником.
Схема подключения 3-х фазного двигателя в сеть 220в соединенного звездой.
Как видно, напряжение 220в распределяется на две последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.
Максимальной мощности двигателя на 380в в сети 220в можно достичь, только используя соединение в треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Схема подключения такого электродвигателя изображено на рисунке 1.
Рис. 1
На рис.2, изображено брно с клеммой на 6 выводов для возможности подключения треугольником. На три получившихся вывода, подается: фаза, ноль и один вывод конденсатора. От того, куда будет подключен второй вывод конденсатора ― фаза или ноль, зависит направление вращения электродвигателя.
На фото: электродвигатель только с рабочими конденсаторами без емкостей для запуска.
Если на вал будет начальная нагрузка, необходимо использовать конденсаторы для запуска. Они соединяются в параллель с рабочими, используя кнопку или переключатель на момент включения. Как только двигатель наберет максимальные обороты, емкости для запуска должны быть отключены от рабочих. Если это кнопка, просто отпускаем ее, а если выключатель, то отключаем. Дальше двигатель использует только рабочие конденсаторы. Такое соединение изображено на фото.
Как подобрать конденсаторы для трехфазного двигателя, используя его в сети 220в.
Первое, что нужно знать ― конденсаторы должны быть неполярными, то есть не электролитическими. Лучше всего использовать емкости марки ― МБГО. Их с успехом использовали в СССР и в наше время. Они прекрасно выдерживают напряжение, скачки тока и разрушающее воздействие окружающей среды.
Также они имеют проушины для крепления, помогающие без проблем расположить их в любой точке корпуса аппарата. К сожалению, достать их сейчас проблематично, но существует множество других современных конденсаторов ничем не хуже первых. Главное, чтобы, как уже говорилось выше, рабочее напряжение их не было меньше 400в.
Расчет конденсаторов. Емкость рабочего конденсатора.
Чтобы не обращаться к длинным формулам и мучить свой мозг, есть простой способ расчета конденсатора для двигателя на 380в. На каждые 100 Вт (0,1 кВт) берется — 7 мкФ. Например, если двигатель 1 кВт, то рассчитываем так: 7 * 10 = 70 мкФ. Такую емкость в одной банке найти крайне трудно, да и дорого. Поэтому чаще всего емкости соединяют в параллель, набирая нужную емкость.
Емкость пускового конденсатора.
Это значение берется из расчета в 2-3 раза больше, чем емкость рабочего конденсатора. Следует учитывать, что эта емкость берется в сумме с рабочей, то есть для двигателя 1 кВт рабочая равна 70 мкФ, умножаем ее на 2 или 3, и получаем необходимое значение. Это 70-140 мкФ дополнительной емкости — пусковой. В момент включения она соединяется с рабочей и в сумме получается — 140-210 мкФ.
Особенности подбора конденсаторов.
Конденсаторы как рабочие, так и пусковые можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.
Кроме указанного выше типа конденсатора — МБГО, можно использовать тип — МБГЧ, МБГП, КГБ и тому подобные.
Реверс.
Иногда возникает необходимость менять направление вращения электродвигателя. Такая возможность есть и у двигателей на 380в, используемых в однофазной сети. Для этого нужно сделать так, чтобы конец конденсатора, подключенный к отдельной обмотке, оставался неразрывным, а другой мог перебрасываться с одной обмотки, где подключен «ноль», к другой где — «фаза».
Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».
Более подробно можно увидеть на рисунке.
Важно! Существуют электродвигатели трехфазные на 220в. У них каждая обмотка рассчитана на 127в и при подключении в однофазную сеть по схеме «треугольник» ― двигатель просто сгорит. Чтобы этого не произошло, такой мотор в однофазную сеть следует подключать только по схеме — «звезда».
Схема подключения трехфазного электродвигателя на 220 соединение и мощность цепи
Широко применяемые на производствах электродвигатели асинхронные соединяют «треугольником» или «звездой». Первый тип в основном используют для моторов продолжительного пуска и работы. Совместное подключение применяют для пуска высокомощных электродвигателей. Подключение «звезда» используют в начале пуска, переходя затем на «треугольник». Применяется также схема подключения трехфазного электродвигателя на 220 вольт.
Разновидностей моторов много, но для всех, главной характеристикой является напряжение, подаваемое на механизмы, и мощность самих двигателей.
При подключении к 220в на мотор действуют высокие пусковые токи, снижающие его срок эксплуатации. В промышленности редко используют соединение треугольником Мощные электродвигатели подключают «звездой».
Для перехода со схемы подключения электродвигателя 380 на 220 есть несколько вариантов, каждый из которых отличается преимуществами и недостатками.
Переподключение с 380 вольт на 220
Очень важно понимать, как подключается трехфазный электродвигатель к сети 220в. Чтобы трехфазный двигатель подключить к 220в, заметим, что у него есть шесть выводов, что соответствует трем обмоткам. При помощи тестера провода прозванивают, чтобы найти катушки. Их концы соединяем по два – получается соединение «треугольник» (и три конца).
Для начала, два конца сетевого провода (220 в) подключаем к любым двум концам нашего «треугольника». Оставшийся конец (оставшаяся пара скрученных проводов катушки) подсоединяется к концу конденсатора, а оставшийся провод конденсатора также соединяется с одним из концов сетевого провода и катушек.
От того, выберем мы один или другой, будет зависеть в какую сторону начнет вращаться двигатель. Проделав все указанные действия, запускаем двигатель, подав на него 220 в.
Электромотор должен заработать. Если этого не произошло, или он не вышел на требуемую мощность, необходимо вернуться на первый этап, чтобы поменять местами провода, т.е. переподключить обмотки.
Если при включении, мотор гудит, но не крутиться, требуется дополнительно установить (через кнопку) конденсатор. Он будет в момент пуска давать двигателю толчок, заставляя крутиться.
Видео:
Видео: Как подключить электродвигатель с 380 на 220
Прозванивание, т.е. измерение сопротивления, проводится тестером. Если такой отсутствует, воспользоваться можно батарейкой и обычной лампой для фонарика: в цепь, последовательно с лампой, подсоединяют определяемые провода. Если концы одной обмотки найдены – лампа загорается.
Труднее гораздо найти определить начало и концы обмоток. Без вольтметра со стрелкой не обойтись.
Подсоединить потребуется к обмотке батарейку, а к другой — вольтметр.
Разрывая контакт провода с батарейкой, наблюдают, отклоняется ли стрелка и в какую сторону. Те же действия проводят с оставшимися обмотками, изменяя, если нужно, полярность. Добиваются чтобы отклонялась стрелка в ту же сторону, что при первом измерении.
Схема звезда-треугольник
В отечественных моторах часто «звезда» собрана уже, а треугольник требуется реализовать, т.е. подключить три фазы, а из оставшихся шести концов обмотки собрать звезду. Ниже дан чертеж, чтобы разобраться было легче.
Главным плюсом соединения трехфазной цепи звездой считают то, что мотор вырабатывает наибольшую мощность.
Тем не менее, подобное соединение «любят» любители, но не часто применяют на производствах, поскольку схема подключения сложная.
Чтобы она работала необходимо три пускателя:
К первому из них –К1 с одной стороны подключается обмотка статора, с другой – ток. Оставшиеся концы статора соединяют с пускателями К2 и К3, а затем для получения «треугольника» к фазам подключаются и обмотка с К2.
Подключив в фазу К3, незначительно укорачивают оставшиеся концы для получения схемы «звезда».
Важно: недопустимо одновременно включать К3 и К2, чтобы не произошло короткое замыкание, которое может приводить к отключению автомата мотора электрического. Во избежание этого, применяют электроблокировку. Работает это так: при включении одного из пускателей, другой отключается, т.е. его контакты размыкаются.
Как работает схема
При включении К1 с помощью реле времени включается К3. Мотор трехфазный, включенный по схеме «звезда» работает с большей мощностью, чем обычно. После некоторого времени, размыкаются контакты реле К3, но запускается К2. Теперь схема работы мотора — «треугольник», а мощность его становится меньше.
Когда требуется отключение питания, запускается К1. Схема повторяется при последующих циклах.
Очень сложное соединение требует навыков и не рекомендуется к реализации новичками.
Другие подключения электродвигателя
Схем несколько:
- Более часто, чем вариант описанный, применяется схема с конденсатором, который поможет значительно уменьшить мощность. Одни из контактов рабочего конденсатора подключается к нулю, второй – к третьему выходу мотора электрического. В результате имеем агрегат малой мощности (1,5 Вт). При большой мощности двигателя, в схему потребуется внесение пускового конденсатора. При однофазном подключении он просто компенсирует третий выход.
- Асинхронный мотор несложно соединить звездой или треугольником при переходе с 380в на 220. У таких моторов обмоток три. Чтобы изменить напряжение, необходимо выходы, идущие к вершинам соединений, поменять местами.
- При подключении электромоторов, важно тщательно изучить паспорта, сертификаты и инструкции, потому что в импортных моделях встречается часто «треугольник», адаптированный под наши 220В. Такие моторы при игнорировании этого и включении «звездой, просто сгорают. Если мощность более 3 кВт, к бытовой сети мотор нельзя. Чревато это коротким замыканием и даже выход из строя автомата УЗО.
Включение трехфазного двигателя в однофазную сеть
Ротор, подключенного к трехфазной цепи трехфазного двигателя, вращается благодаря магнитному полю, создаваемом током, идущим в разное время по разным обмоткам. Но, при подключении такого двигателя к цепи однофазной, не возникает вращающий момент, который мог бы вращать ротор. Наиболее простым способом подключения двигателей трехфазных к однофазной цепи является подсоединение его третьего контакта через фазосдвигающий конденсатор.
Включенные в однофазную сеть такой мотор имеет такую же частоту вращения, как при работе от трехфазной сети. Но о мощности нельзя сказать этого: ее потери значительны и зависят они от емкости конденсатора фазосдвигающего, условия работы мотора, выбранной схемы подключения. Потери на ориентировочно достигают 30-50%.
Цепи могут быть двух — , трех-, шестифазными, но наиболее применяемыми являются трехфазные. Под трехфазной цепью понимают совокупность цепей электрических с одинаковой частотой синусоидальной ЭДС, которые отличаются по фазе, но создаются общим источником энергии.
Если нагрузка в фазах одинакова, цепь является симметричной. У трехфазных несимметричных цепей – она разная. Полная мощность складывается из активной мощности трехфазной цепи и реактивной.
Хотя большинство двигателей справляется с работой от однофазной сети, но хорошо работать могут не все. Лучше других в этом смысле двигатели асинхронные, которые рассчитаны на напряжение 380/220 В (первое — для звезды, второе – треугольника).
Это рабочее напряжение всегда указывают в паспорте и на прикрепленной к двигателю табличке. Также там указана схема подключения и варианты ее изменения.
Если присутствует «А», это свидетельствует о том, что использоваться может как схема «треугольник», так и «звезда». «Б» сообщает о том, что подключены обмотки «звездой» и не могут быть соединены по – другому.
Получится в результате должно: при разрыве контактов обмотки с батареей, электрический потенциал той же полярности (т.е. отклонение стрелки происходит в ту же сторону) должен появляться на двух оставшихся обмотках. Выводы начала (А1, В1, С1) и конца (А2, В2, С2) помечают и подсоединяют по схеме.
Использование магнитного пускателя
Применение схемы подключения электродвигателя 380 через пускатель хорошо тем, что пуск производить можно дистанционно. Преимущество пускателя перед рубильником (или другим устройством) в том, что пускатель можно разместить в шкафу, а в рабочую зону вынести элементы управления, напряжение и токи при этом минимальны, следовательно, провода подойдут меньшего сечения.
Помимо этого, подключение с использованием пускателя обеспечивает безопасность в случае, если «пропадает» напряжение, поскольку при этом происходит размыкание силовых контактов, когда же напряжение вновь появится, пускатель без нажатия пусковой кнопки его не подаст на оборудование.
Схема подключения пускателя асинхронного двигателя электрического 380в:
На контактах 1,2,3 и пусковой кнопке 1 (разомкнутой) напряжение присутствует в начальный момент. Затем оно подается через замкнутые контакты этой кнопки (при нажатии на «Пуск») на контакты пускателя К2 катушки, замыкая ее. Катушкой создается магнитное поле, сердечник притягивается, контакты пускателя замыкаются, приводя в движение мотор.
Одновременно с этим происходит замыкание контакта NO, с которого подается фаза на катушку через кнопку «Стоп». Получается, что, когда отпускают кнопку «Пуск», цепь катушки остается замкнутой, как и силовые контакты.
Нажав «Стоп», цепь разрывают, возвращая размыкая силовые контакты. С питающих двигатель проводников и NO исчезает напряжение.
Видео: Подключение асинхронного двигателя. Определение типа двигателя.
Трехфазный двигатель, работающий от однофазного источника питания
Трехфазный асинхронный электродвигатель переменного тока широко используется в промышленном и сельскохозяйственном производстве благодаря своей простой конструкции, низкой стоимости, простоте обслуживания и эксплуатации. Трехфазный двигатель переменного тока использует трехфазный источник питания (3 фазы 220 В, 380 В, 400 В, 415 В, 480 В и т. Д.), Но в некоторых реальных приложениях у нас есть только однофазные источники питания (1 фаза 110 В, 220 В, 230 В, 240 В и т. Д.). .), особенно в бытовой технике. В случае, если трехфазные машины работают от однофазных источников питания, есть 3 способа сделать это:
- Перемотка мотора
- Купить GoHz VFD
- Купить преобразователь частота / фаза
I: Перемотка двигателя
Необходимо выполнить некоторые работы по преобразованию работы трехфазного двигателя в однофазное питание.Здесь вы узнаете, как преобразовать трехфазный двигатель 380 В для работы от однофазного источника питания 220 В.
Принцип перемотки
Трехфазный асинхронный двигатель использует три взаимно разделенных угла 120 ° сбалансированного тока через обмотку статора для создания изменяющегося во времени вращающегося магнитного поля для привода двигателя. Прежде чем говорить об использовании трехфазного асинхронного двигателя, переводимого для работы от однофазного источника питания, мы должны разъяснить вопрос создания вращающегося магнитного поля однофазного асинхронного двигателя, поскольку однофазный двигатель может быть запущен только после установления вращающегося магнитного поля. .Причина отсутствия начального пускового момента в том, что однофазная обмотка в магнитном поле не вращается, а пульсирует. Другими словами, он зафиксирован относительно статора. В этом случае пульсирующее магнитное поле статора взаимодействует с током в проводнике ротора и не может генерировать крутящий момент, потому что нет вращающегося магнитного поля, поэтому двигатель не может быть запущен. Однако положение двух обмоток внутри двигателя имеет разный угол наклона. Если он пытается произвести ток другой фазы, у двухфазного тока есть определенная разность фаз во времени, чтобы создать вращающееся магнитное поле.Таким образом, статор однофазного двигателя должен иметь не только рабочую обмотку, но и пусковую. В соответствии с этим принципом мы можем использовать трехфазную обмотку трехфазного асинхронного двигателя и сдвинуть одну из катушек обмотки с помощью конденсатора или индуктивности, так что две фазы могут проходить через разный ток, чтобы установить вращающееся магнитное поле, чтобы управлять двигателем. Когда трехфазный асинхронный двигатель использует однофазный источник питания, мощность составляет только 2/3 от исходной.
Метод перемотки
Чтобы использовать трехфазный двигатель на однофазном источнике питания, мы можем последовательно соединить любые двухфазные катушки обмотки, а затем подключить к другой фазе. В это время магнитный поток в двух обмотках имеет разность фаз, но рабочая обмотка и пусковая обмотки подключены к одному источнику питания, поэтому ток одинаковый. Следовательно, подключите конденсатор, катушку индуктивности или резистор к пусковой обмотке последовательно, чтобы ток имел разность фаз.Для увеличения пускового момента соединения можно использовать автотрансформатор для увеличения напряжения однофазного источника питания с 220 В до 380 В, как показано на рисунке 1.
Малогабаритные двигатели общего назначения имеют Y-образное соединение. Для трехфазного асинхронного двигателя Y-типа клемма обмотки конденсатора C подключается к клемме пуска автотрансформатора. Если вы хотите изменить направление вращения вала, подключите его, как показано на рисунке 2.
Если вы не хотите повышать напряжение, источник питания 220 В также может использовать это.Поскольку исходная трехфазная обмотка напряжения питания 380 В теперь используется для источника питания 220 В, напряжение слишком низкое, поэтому крутящий момент слишком низкий.
Рисунок 3 Слишком низкий крутящий момент проводки. Если вы хотите увеличить крутящий момент, вы можете подключить конденсатор фазовой синхронизации к двухфазной обмотке катушки и использовать ее в качестве пусковой. Одна катушка, напрямую подключенная к источнику питания 220 В, см. Рисунок 4.
На рисунках 3 и 4, если вам нужно изменить направление вращения вала, вы можете просто изменить сквозное направление пусковой обмотки или рабочей обмотки. .
Магнитный момент после того, как две обмотки соединены последовательно (одна из которых является обратной струной), складывается из двух углов магнитного момента 60 ° (Рисунок 5). Магнитный момент намного выше, чем магнитный момент 120 ° (показан на Рисунке 6), поэтому пусковой момент проводки на Рисунке 5 больше, чем на Рисунке 6.
Значение резистора доступа R (Рисунок 7) на обмотке пускателя должно быть замкнуто на сопротивление фазы обмотки статора и должно выдерживать пусковой ток, равный 0.1-0,12 пускового момента.
Выбор конденсатора фазового сдвига
Рабочий конденсатор c = 1950 × Ie / Ue × cosφ (микрозакон), Ie, ue, cosφ — это исходный номинальный ток двигателя, номинальное напряжение и значения мощности.
Обычный рабочий конденсатор, используемый в однофазном источнике питания на трехфазном асинхронном двигателе (220 В): на каждые 100 Вт используются 4-6 микроконденсаторы. Пусковой конденсатор может быть выбран в соответствии с пусковой нагрузкой, обычно от 1 до 4 раз больше рабочего конденсатора.Когда двигатель достигает 75% ~ 80% номинальной скорости, пусковой конденсатор должен быть отключен, иначе двигатель сгорит.
Емкость конденсатора должна быть выбрана правильно, чтобы токи 11, 12 двух фазных обмоток были равны и равны номинальному току Ie, то есть 11 = 12 = Ie. Если требуется высокий пусковой момент, можно добавить пусковой конденсатор и подключить к рабочему конденсатору. При нормальном запуске отключите пусковой конденсатор.
Работа трехфазного двигателя от однофазного источника питания дает много преимуществ, перемотка выполняется легко.Однако общая мощность однофазного источника питания слишком мала, он должен выдерживать высокий пусковой ток, поэтому этот метод можно применить только к двигателю мощностью 1 кВт или менее.
II: Купите частотно-регулируемый привод GoHz.
VFD, сокращение от Variable Frequency Drive, это устройство для управления двигателем, работающим с регулируемой скоростью. Однофазный преобразователь частоты в трехфазный — лучший вариант для трехфазного двигателя, работающего от однофазного источника питания (1 фаза 220 В, 230 В, 240 В), он устраняет пусковой ток во время запуска двигателя, заставляя двигатель работать с нулевой скорости до полной. скорость плавная, плюс цена абсолютно доступная.Доступны частотно-регулируемые приводы GoHz мощностью от 1/2 до 7,5 л.с., более мощные частотно-регулируемые приводы можно настроить в соответствии с конкретными двигателями.
Видео с разводкой однофазного и трехфазного частотно-регулируемого привода с частотой ГГЦ
Преимущества использования частотно-регулируемого привода с частотой 1 ГГц для трехфазного двигателя:
- Плавный запуск может быть достигнут путем настройки параметров частотно-регулируемого привода, время запуска может быть установлено в несколько секунд или даже десятки.
- Функция бесступенчатого регулирования скорости, обеспечивающая оптимальную работу двигателя.
- Переведите двигатель с индуктивной нагрузкой на емкостную нагрузку, которая может увеличить коэффициент мощности.
- VFD имеет функцию самодиагностики, а также функции защиты от перегрузки, перенапряжения, низкого давления, перегрева и более 10 функций.
- Может быть легко запрограммирован с клавиатуры для автоматического управления.
III: Купите преобразователь частоты / фазы.
Преобразователь частоты GoHz или преобразователь фазы также можно использовать для таких ситуаций, он может преобразовывать однофазный (110v, 120v, 220v, 230v, 240v) в трехфазный (0-520v). регулируемые) с чистым синусоидальным выходом, который лучше для работы двигателя, чем форма волны ШИМ VFD, они предназначены для лабораторных испытаний, самолетов, военных и других приложений, где требуются высококачественные источники питания, это чрезвычайно дорого.
Статья по теме: Воздействие двигателя 60 Гц (50 Гц) на источник питания 50 Гц (60 Гц)
.Схема регулятора скорости трехфазного асинхронного двигателя
В этом посте мы обсудим создание простой схемы регулятора скорости трехфазного асинхронного двигателя, которая также может применяться для однофазного асинхронного двигателя или буквально для любого типа двигателя переменного тока.
Когда доходит до управления скоростью асинхронных двигателей, обычно используются матричные преобразователи, включающие множество сложных каскадов, таких как LC-фильтры, двунаправленные массивы переключателей (с использованием IGBT) и т. Д.
Все они используются для достижения в конечном итоге прерванный сигнал переменного тока, рабочий цикл которого можно регулировать с помощью сложной схемы микроконтроллера, что в конечном итоге обеспечивает необходимое управление скоростью двигателя.
Тем не менее, мы можем поэкспериментировать и попытаться реализовать управление скоростью трехфазного асинхронного двигателя с помощью гораздо более простой концепции, используя усовершенствованные ИС оптопары детектора перехода через нуль, силовой симистор и схему ШИМ.
Использование детектора перехода через ноль Оптопара
Благодаря серии оптопар MOC, которые сделали схемы управления симисторами чрезвычайно безопасными и простыми в настройке, а также обеспечивают беспроблемную интеграцию ШИМ для предполагаемых элементов управления.
В одном из своих предыдущих постов я обсуждал простую схему контроллера двигателя с плавным пуском с ШИМ, в которой реализована микросхема MOC3063 для обеспечения эффективного плавного пуска подключенного двигателя.
Здесь мы также используем идентичный метод для обеспечения соблюдения предлагаемой схемы регулятора скорости трехфазного асинхронного двигателя, на следующем изображении показано, как это можно сделать:
На рисунке мы видим три идентичных каскада оптопары MOC, сконфигурированных в их стандартном симисторе. режим регулятора, а входная сторона интегрирована с простой схемой ШИМ IC 555.
Три контура MOC сконфигурированы для обработки входного трехфазного переменного тока и подачи его на подключенный асинхронный двигатель.
Вход ШИМ на стороне управления изолированными светодиодами оптического блока определяет коэффициент прерывания трехфазного входа переменного тока, который обрабатывается MOC ICS.
Использование ШИМ-контроллера IC 555 (переключение при нулевом напряжении)
Это означает, что, регулируя потенциометр ШИМ, связанный с ИС 555, можно эффективно управлять скоростью асинхронного двигателя.
Выход на его выводе №3 имеет изменяющийся рабочий цикл, который, в свою очередь, соответственно переключает выходные симисторы, что приводит либо к увеличению среднеквадратичного значения переменного тока, либо к его уменьшению.
Увеличение RMS с помощью более широких PWM позволяет достичь более высокой скорости двигателя, в то время как уменьшение RMS переменного тока с помощью более узких PWM производит противоположный эффект, то есть вызывает пропорциональное замедление двигателя.
Вышеупомянутые функции реализованы с большой точностью и безопасностью, поскольку ИС имеют множество внутренних сложных функций, специально предназначенных для управления симисторами и тяжелыми индуктивными нагрузками, такими как асинхронные двигатели, соленоиды, клапаны, контакторы, твердотельные реле и т. Д.
IC также обеспечивает идеально изолированную работу для каскада постоянного тока, что позволяет пользователю выполнять регулировки, не опасаясь поражения электрическим током.
Этот принцип можно также эффективно использовать для управления скоростью однофазного двигателя, используя одну MOC IC вместо 3.
Конструкция фактически основана на теории пропорционального по времени симистора. Верхняя схема ШИМ IC555 может быть отрегулирована для обеспечения рабочего цикла 50% при гораздо более высокой частоте, в то время как нижняя схема ШИМ может использоваться для реализации операции управления скоростью асинхронного двигателя посредством регулировки соответствующего потенциометра.
Рекомендуется, чтобы эта микросхема 555 имела относительно более низкую частоту, чем верхняя схема IC 555. Это можно сделать, увеличив емкость конденсатора на выводе 6/2 примерно до 100 нФ.
ПРИМЕЧАНИЕ: ДОБАВЛЕНИЕ ПОДХОДЯЩИХ ИНДУКТОРОВ ПОСЛЕДОВАТЕЛЬНО С ФАЗОВЫМИ ПРОВОДАМИ МОЖЕТ Существенно улучшить ХАРАКТЕРИСТИКИ УПРАВЛЕНИЯ СКОРОСТЬЮ СИСТЕМЫ.Datasheet для MOC3061
Предполагаемая форма волны и управление фазой с использованием вышеуказанной концепции:
Вышеописанный метод управления трехфазным асинхронным двигателем на самом деле довольно грубый, поскольку он не имеет контроля В / Гц .
Он просто использует включение / выключение сети с разной скоростью для выработки средней мощности двигателя и управления скоростью, изменяя этот средний переменный ток двигателя.
Представьте, что вы включаете / выключаете двигатель вручную 40 или 50 раз в минуту. Это приведет к тому, что ваш двигатель замедлится до некоторого относительного среднего значения, но будет двигаться непрерывно. Вышеупомянутый принцип работает точно так же.
Более технический подход заключается в разработке схемы, которая обеспечивает надлежащий контроль соотношения В / Гц и автоматически регулирует его в зависимости от скорости скольжения или любых колебаний напряжения.
Для этого мы в основном используем следующие этапы:
- Схема драйвера H-Bridge или полного моста IGBT
- 3-фазный генераторный каскад для питания полной мостовой схемы
- В / Гц ШИМ-процессор
Использование полного моста Схема управления IGBT
Если процедуры настройки вышеупомянутой конструкции на основе симистора выглядят пугающими, можно попробовать следующее управление скоростью асинхронного двигателя на основе полномостового ШИМ:
В схеме, показанной на рисунке выше, используется один полный кристалл. -мостовой драйвер IC IRS2330 (последняя версия — 6EDL04I06NT), который имеет все встроенные функции для обеспечения безопасной и идеальной работы трехфазного двигателя.
ИС требуется только синхронизированный трехфазный логический вход через его выводы HIN / LIN для генерации необходимого трехфазного колебательного выхода, который, наконец, используется для работы полной мостовой IGBT-сети и подключенного трехфазного двигателя.
ШИМ-инжектор с регулировкой скорости реализуется через 3 отдельных полумостовых каскада драйверов NPN / PNP, управляемых с помощью SPWM-питания от генератора ШИМ IC 555, как было показано в наших предыдущих проектах. Этот уровень ШИМ может в конечном итоге использоваться для управления скоростью асинхронного двигателя.
Прежде чем мы изучим фактический метод управления скоростью для асинхронного двигателя, давайте сначала разберемся, как автоматическое управление В / Гц может быть достигнуто с помощью нескольких схем IC 555, как описано ниже.
Схема автоматического ШИМ-процессора В / Гц (Замкнутый контур)
В вышеуказанных разделах мы изучили конструкции, которые помогут асинхронному двигателю двигаться со скоростью, указанной производителем, но он не будет регулироваться в соответствии с постоянным соотношением В / Гц, если не будет следующая ШИМ процессор интегрирован с входным каналом H-Bridge PWM.
Вышеупомянутая схема представляет собой простой генератор ШИМ с использованием пары IC 555. IC1 генерирует частоту ШИМ, которая преобразуется в треугольные волны на выводе №6 IC2 с помощью R4 / C3.
Эти треугольные волны сравниваются с синусоидальной пульсацией на выводе № 5 IC2. Эти пульсации образца получаются путем выпрямления трехфазной сети переменного тока в пульсации 12 В переменного тока и подаются на вывод № 5 IC2 для необходимой обработки.
Путем сравнения двух сигналов, SPWM соответствующего размера генерируется на выводе № 3 IC2, который становится управляющим ШИМ для сети H-моста.
Как работает схема В / Гц
При включении питания конденсатор на выводе №5 начинает с передачи нулевого напряжения на выводе №5, которое вызывает наименьшее значение SPWM в Н-мостовой схеме, которая, в свою очередь, включает асинхронный двигатель для запуска с медленным плавным пуском.
По мере зарядки этого конденсатора потенциал на выводе № 5 повышается, что пропорционально увеличивает SPWM и позволяет двигателю постепенно набирать скорость.
Мы также можем видеть цепь обратной связи тахометра, которая также интегрирована с контактом № 5 микросхемы IC2.
Этот тахометр контролирует скорость ротора или скорость скольжения и генерирует дополнительное напряжение на выводе № 5 IC2.
Теперь, когда скорость двигателя увеличивается, скорость скольжения пытается синхронизироваться с частотой статора, и в процессе она начинает набирать скорость.
Это увеличение индукционного скольжения пропорционально увеличивает напряжение тахометра, что, в свою очередь, заставляет IC2 увеличивать выходной сигнал SPWM, что, в свою очередь, дополнительно увеличивает скорость двигателя.
Вышеупомянутая настройка пытается поддерживать отношение В / Гц на довольно постоянном уровне до тех пор, пока, наконец, SPWM от IC2 не сможет увеличиваться дальше.
В этот момент скорость скольжения и скорость статора достигают установившегося состояния, и это поддерживается до тех пор, пока входное напряжение или скорость скольжения (из-за нагрузки) не изменятся. В случае их изменения схема процессора V / Hz снова вступает в действие и начинает регулировать соотношение для поддержания оптимального отклика скорости асинхронного двигателя.
Тахометр
Цепь тахометра также может быть дешево построена с использованием следующей простой схемы и интегрирована с описанными выше этапами схемы:
Как реализовать контроль скорости
В предыдущих абзацах мы поняли процесс автоматического регулирования, который может eb достигается за счет интеграции обратной связи тахометра в схему автоматического регулируемого контроллера SPWM.
Теперь давайте узнаем, как можно регулировать скорость асинхронного двигателя, изменяя частоту, что в конечном итоге заставит SPWM упасть и поддерживать правильное соотношение В / Гц.
На следующей схеме поясняется каскад управления скоростью:
Здесь мы можем увидеть схему трехфазного генератора с использованием микросхемы IC 4035, частота сдвига фаз которой может быть изменена путем изменения тактового сигнала на его выводе №6.
Трехфазные сигналы подаются на логические элементы 4049 IC для создания требуемых HIN, LIN-каналов для полной мостовой сети драйверов.
Это означает, что, соответствующим образом изменяя тактовую частоту IC 4035, мы можем эффективно изменить рабочую трехфазную частоту асинхронного двигателя.
Это реализуется через простую нестабильную схему IC 555, которая подает регулируемую частоту на вывод № 6 IC 4035 и позволяет регулировать частоту через подключенный потенциометр 100K. Конденсатор C должен быть рассчитан таким образом, чтобы регулируемый частотный диапазон находился в пределах корреляции
.3-фазный инвертор шпинделя привод переменного тока 4 кВт преобразователь частоты 220 в 3-фазный преобразователь частоты для регулятора скорости двигателя VFD | |
Обратите внимание: Мы не несем ответственности за уплату таможенных пошлин или налогов на импорт!
Платеж
A. Пожалуйста, произведите оплату безопасным платежом заранее, чтобы мы могли организовать доставку вовремя.
B. При оплате укажите подробный адрес доставки, контактные данные и телефон.Очень важно успешно доставить посылку. Перед оплатой убедитесь, что ваш адрес в Aliexpress совпадает с вашим адресом доставки. Специально для российского покупателя необходимо указать полное имя (имя, отчество, фамилия). Огромное спасибо.
C. Мы не несем ответственности за какие-либо таможенные пошлины или налог на импорт. Пожалуйста, свяжитесь с таможней вашей страны, чтобы определить, какие дополнительные расходы будут понесены до торгов / покупки.
Доставка
А.Вся упаковка представляет собой стандартную бумажную коробку или деревянную упаковку для большого заказа.
B. Обратите внимание на дату доставки, используя другую экспресс-доставку, поэтому выберите правильную доставку в соответствии с вашими потребностями.
C. Если вы готовитесь к крупному заказу, свяжитесь с нами, если вам нужна доставка любым другим способом.
D. Все посылки будут отправлены с номером для отслеживания.
Обратная связь
Ваш положительный отзыв очень важен.Мы гарантируем качество нашей продукции. Каждый товар будет тщательно проверен перед доставкой. Пожалуйста, немедленно свяжитесь с нами, если у вас есть какие-либо причины. Мы сделаем все возможное, чтобы удовлетворить вас.
Если вы удовлетворены нашими продуктами и услугами, пожалуйста, оставьте нам положительный отзыв с пятью звездами (★★★★★). Для нас это очень важно. Большое спасибо заранее.
Свяжитесь с нами
Мы ответим на ваши запросы как можно скорее.Однако обратите внимание, что разница во времени с Западной Европой составляет 12–16 часов, а с США — 8 часов. Поэтому мы обещаем, что постараемся ответить в течение 24 часов.
Для оптовых заказов, пожалуйста, свяжитесь с нами для получения подробной информации. Мы можем предоставить вам соответствующую скидку.
.Однофазный в 3-фазный моторный привод VFD Регулятор скорости AC220V Преобразователь 2,2 кВт | |
Технологии нашей продукции
A. Схема подключения клемм нашей продукции
B. Технические характеристики нашей продукции
● Входные и выходные характеристики
Диапазон входного напряжения: 220 В / 380 В ± 15%
Диапазон входных частот: 47 ~ 63 Гц
Диапазон выходного напряжения: 0 ~ номинальное входное напряжение
Диапазон выходной частоты: 0 ~ 650 Гц
● Функции периферийного интерфейса
Программируемый цифровой вход: 4 входа
Программируемый аналоговый вход: AI1: вход 0 ~ 10 В, AI2: вход 0 ~ + 5 В или вход потенциометра панели
Выход с открытым коллектором: 1 выход
Релейный выход: 1 выход
Аналоговый выход: 1 выход, опционально 4 ~ 20 мА или 0 ~ 10 В
● Технические характеристики
Управление: векторное управление без PG, управление V / F
Пусковой момент: без векторного управления PG: 0.5 Гц / 150% (SVC)
Передаточное число: без векторного управления PG: 1: 100
Точность управления скоростью: векторное управление PG: ± 0,5% от максимальной скорости
Несущая частота: 0,5 ~ 15,0 кГц
● Характеристики
Режим настройки частоты: цифровая настройка, аналоговая настройка, настройка последовательной связи, многоскоростной, настройка PID.
Функция ПИД-регулирования
Функция многоскоростного управления: 8-ступенчатое управление
Функция контроля частоты качания
Мгновенное отключение электроэнергии без функции остановки
Функция клавиши REV / JOG: определяемые пользователем многофункциональные сочетания клавиш
Функция автоматической регулировки напряжения: при изменении напряжения сети выходное напряжение может автоматически поддерживаться постоянным.
Обеспечивает до 25 видов защиты от повреждений: от перегрузки по току, от перенапряжения, от пониженного напряжения, от перегрева, обрыва фазы, от перегрузки и других защит.
.