Температурно-усадочные швы | ИНФОПГС
В монолитных железобетонных плитах следует предусматривать их разрезку постоянными и временными температурно-усадочными швами, расстояния между которыми назначают в зависимости от климатических условий, конструктивных особенностей сооружения, последовательности производства работ и т.п. (см. п. 10.2.3 СП63.13330.2012 Бетонные и железобетонные конструкции.
Расстояние между температурно-усадочными швами следует принимать по таблице (см.таб.3 Пособие по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-84)
Конструкции |
Наибольшие расстояния, м, между температурно-усадочными швами, допускаемые без расчета, для конструкций, находящихся |
||
внутри отапливаемых зданий или в грунте |
внутри неотапливаемых зданий |
на открытом воздухе |
|
1. Бетонные: |
|
|
|
а) сборные |
40 |
35 |
30 |
б) монолитные: |
|
|
|
при конструктивном армировании |
30 |
25 |
20 |
без конструктивного армирования |
20 |
15 |
10 |
2. Железобетонные: |
|
|
|
а) сборно-каркасные: |
|
|
|
одноэтажные |
72 |
60 |
48 |
многоэтажные |
60 |
50 |
40 |
б) сборно-монолитные и монолитные: |
|
|
|
каркасные |
50 |
40 |
30 |
сплошные |
40 |
30 |
25 |
Если фундаменты не могут быть разделены на участки длиной менее 40 м, то необходимо предусматривать временные усадочные швы шириной от 0,7 до 1,2 м —
Поверхность рабочих швов, устраиваемых при укладке бетонной смеси с перерывами, должна быть перпендикулярна оси бетонируемых колонн и балок, поверхности плит и стен. Возобновление бетонирования допускается производить по достижении бетоном прочности не менее 1,5 МПа (см. п.5.3.12 СП70.13330.2012 Несущие и ограждающие конструкции).
Рабочим швом называют плоскость стыка между затвердевшим и новым (свежеуложенным) бетоном, образованнуюиз-заперерыва в бетонировании. Рабочий шов образуется в том случае, когда последующие слои бетонной смеси укладывают на полностью затвердевшие предыдущие слои. Обычно это происходит тогда, когда перерыв в бетонировании составляет5—7ч и более.
Величина сцепления нового бетона со старым значительно ниже, чем монолита. Поэтому рабочий шов отличается от монолитного бетона не только по прочности, но и по другим характеристикам: он менее морозостоек, водопроницаем и т. д. Для уменьшения отрицательного влияния рабочих швов на конструкцию необходимо: во-первых,размещать их в местах, наименее опасных для прочности конструкций, и так, чтобы они не ухудшали внешний вид сооружения;во-вторых,допускаются только конструктивно оформленные рабочие швы;в-третьих,такие швы перед укладкой свежего бетона нужно соответствующим образом обработать. Конструктивное оформление рабочих швов зависит от вида конструкций, их размеров и армирования. Для образования швов в плитах устанавливают доски, плоские щиты или щиты с уступом. Уступ делают для удлинения поперечной линии шва, что увеличивает его прочность и водонепроницаемость.
Перед укладкой свежего бетона с поверхности шва удаляют рыхлые слои бетона и цементную корку, очищают его от грязи и мусора. Если поверхность затвердевшего бетона шва гладкая, ее насекают зубилами, скарпелью или с помощью отбойного молотка с последующей промывкой и продувкой сжатым воздухом. Непосредственно перед укладкой нового бетона поверхность шва следует увлажнить, а также уложить слой жирного раствора на том же цементе, что и основной бетон. Все это способствует обеспечению высокой прочности и водонепроницаемости шва.
Холодный шов при бетонировании
Монолитный бетон и железобетон, как правило, экономичнее сборного в подземных частях зданий и сооружений, в фундаментах под технологическое оборудование, в конструкциях массивных стен, в дорожном и гидротехническом строительстве. Широкую сферу эффективного применения он находит также в сборно-монолитных конструкциях.
В СНиП 3.03.01-87 ”Несущие и ограждающие конструкции” при монолитном бетонировании предусматривается укладка бетонных смесей двумя принципиально различными способами:
-укладка без перерывов в бетонировании до начала схватывания предыдущего слоя бетона, то есть без образования рабочего шва;
Непрерывное бетонирование предпочтительнее, так как этот способ обеспечивает наивысшее качество монолитных конструкций, однако по технологическим и организационным причинам это не всегда возможно, поэтому, как правило, проектом предусматриваются рабочие швы.
Рабочие швы также называют строительными швами, швами бетонирования или ”холодными швами”. Образование рабочих швов вызвано остановками бетонирования и определяется рядом причин:
-организационных: окончание рабочей смены, ремонт оборудования, нехватка материалов, несовершенную общую организацию работ, технические возможности используемых машин и механизмов;
-конструктивных: обеспечение направленных деформаций отдельных участков конструкций и сооружений в целом.
Как правило, возводимые монолитные бетонные и железобетонные конструкции бетонируются отдельными сопрягаемыми между собой участками — блоками (картами) бетонирования.
Рабочий шов бетона образуется, когда каждый последующий слой бетонной смеси укладывают на затвердевший (схватившийся) предыдущий слой бетона. Отличительной особенностью рабочего шва является то, что сцепление нового бетона с уже затвердевшим бетоном значительно ниже, чем прочность монолитного бетона без рабочего шва, вследствие чего снижаются морозостойкость, водонепроницаемость и ухудшается внешний вид конструкций. Это объясняется тем, что ”холодные швы” являются границей, на которой происходит превращение усадочных напряжений сжатия в напряжения растяжения, и поэтому зона шва становится предварительно напряженной. Как известно, бетон хорошо работает на сжатие, менее стоек к изгибающим нагрузкам и значительно хуже противостоит напряжениям растяжения. В результате релаксации напряжений растяжения, реализующихся в виде микротрещин, зона стыка имеет меньшую плотность и прочность, по сравнению с монолитным бетоном и при равных растягивающих напряжениях, трещины прежде всего открываются именно по швам.
Годовой объем производства монолитного бетона и железобетона в России составляет 25-30 млн. м³. При допущении, что половина конструкций изготавливается способом послойной укладки с толщиной слоя ориентировочно 50 см за проход, общая площадь рабочих швов требующих подготовки поверхности составляет 12-15 млн. м²/год.
Цементная пленка
Основным источником образования цементной пленки является водный раствор гидроксида кальция Са(ОН)2, который выходит на поверхность бетона, реагирует с углекислотой воздуха СО2 и образует нерастворимую в воде пленку карбоната кальция СаСО3 (по химсоставу – известняком). Другим источником являются соли щелочных металлов, присутствующие в цементе в свободном виде; добавляемые в цемент цеолитовые туфы и зола-унос (зольные микросферы) тепловых электростанций, выделяющие щелочи; песок, щебень и гравий, содержащие галоидные соединения; ускорители твердения, противоморозные добавки, пластификаторы и другие добавки. При затворении цемента водой водорастворимые щелочи образуют растворы и химически связываются с силикатами и алюминатами цемента. Затем, при контакте с углекислотой воздуха щелочи карбонизируются с образованием нерастворимой в воде плотной цементной пленки.
Химически цементную пленку можно представить как смесь растворимых и нерастворимых в воде карбонатов, сульфатов, нитратов и хлоридов.
В поверхностном слое вытесненной из бетонной смеси воды, несмотря на полное превращение всего вяжущего в кристаллизующийся гидрат, не происходит образования плотной и прочной кристаллической структуры.
Физически цементная пленка, в отличие от тела цементного камня, представляет собой не прочную кристаллическую структуру, а рыхлую непрочную конденсационную структуру, заполняющую поровое пространство бетона на некоторую глубину.
При послойной укладке бетонной смеси на рабочий шов имеющий на поверхности цементную пленку, вместо ожидаемой по проекту монолитной, образуется трехслойная конструкция: ”бетон – цементная пленка – бетон”.
В этой конструкции с точки зрения прочности слабым местом является именно цементная пленка. Очевидно, что при пороговом напряжении, значение которого значительно ниже расчетного, разрушение бетонной конструкции произойдет именно по этой границе раздела. Из теории прочности известно, что для наиболее эффективного перераспределения напряжений и наиболее полной диссипации энергии при ветровых или сейсмических нагрузках конструкция должна обладать возможно полной монолитностью. В случае ”трехслойной” конструкции здание возможно рассматривать не как монолитную конструкцию, а как сборную, состоящую из ”этажей”, каждый из которых самостоятельно воспринимает механическую нагрузку и работает независимо от других.
Традиционные способы очистки рабочих швов
СНиП 3.03.01-87 определены способы очистки и установлены требования по прочности поверхности бетона при очистке от цементной пленки: механическая обработка металлической щеткой — не менее 1,5 МПа; механическое фрезерование — не менее 5 МПа; гидропескоструйная обработка — не менее 5 МПа; промывка водой и сушка сжатым воздухом — не менее 0,3 МПа. Рекомендации по величине допустимого временного интервала перекрытия слоев бетона до образования рабочего шва противоречивы и находятся в диапазоне 2-4,5 ч. Во всех случаях обязательной являтся очистка поверхности ранее уложенного бетона от пыли, грязи, масла и строительного мусора. Для предотвращения обезвоживания укладываемой смеси бетонное основание увлажняют. При перерыве в бетонировании качество верхнего (контактного) слоя бетона ухудшается во времени из-за водоотделения, наиболее интенсивно протекающего в первые 1-1,5 ч. И все же, прочность стыка при перерывах в бетонировании, составляющем до 5 и даже более часов, существенно выше, чем прочность стыка с полностью затвердевшим бетоном даже при тщательной подготовке его поверхности. При перерывах в работе дальнейшая укладка смеси может проводиться только после набора ранее уложенным бетоном прочности не менее 1,5 МПа, что гарантирует отсутствие нарушения его структуры. Рассмотрим достоинства и недостатки существующих способов очистки и подготовки поверхности рабочих швов:
1. Механическое фрезерование и механическая очистка поверхности бетона от цементной пленки производится металлическими щетками или метлами с проволочной щетиной. Сухая механическая очистка поверхности затвердевшего бетона возможна только после набора им определенной прочности, во избежании повреждения низлежащих слоев. Однако с набором бетоном прочности очистка поверхности рабочих швов затрудняется.
Применение приводных металлических щеток и машинного фрезерования оправдано только при наборе бетоном прочности не более 2-3 МПа. При большей прочности бетона эффективность обработки снижается из-за значительного увеличения продолжительности очистки и повышенного износа щеток. Достоинством механических способов очистки является применение их там, где невозможно использование пыльных и мокрых и дорогостоящих процессов пескоструйной и гидропескоструйной обработки. Очень эффектина насечка поверхности, увеличивающая площадь передачи напряжений. Однако, применение для снятия пленки и последующей насечки инструментов ударного действия (перфораторов, отбойных молотков) должно быть исключено, ввиду возможного повреждения верхнего слоя бетона стыкуемой поверхности. К недостаткам механических способов подготовки поверхности бетона можно отнести следующие:
-возможность очистки только после набора бетоном прочности 1,5 МПа приводит к длительным технологическим перерывам;
-удаляется только верхний слой цементной пленки и не открываются поры бетона;
-возможно возникновение и релаксация внутренних напряжений в виде микротрещин;
-пылеобразование требует очистки промышленным пылесосом;
-высокая стоимость оборудования и трудоемкость;
-сложность организации контроля качества работ.
2. При гидропескоструйной обработке удаляется цементная пленка и только в поверхностном слое открываются поры бетона. Процесс обладает следующими недостатками:
-отсутствие возможности проведения очистки до набора бетоном прочности 5 МПа и необходимость в длительных технологических перерывах для набора бетоном необходимой прочности;
-возникновение внутренних напряжений в результате ударного воздействия рабочей струи и их релаксация приводящая к микротрещинам;
-высокая стоимость компрессоров высокого и сверхвысокого давления, абразивоструйных комплексов и установок фильтрации и кондиционирования воздуха;
-ограничения в применении при внутренних работах и при действующем производстве.
3. Наиболее просто производить удаление цементной пленки с поверхности рабочего шва водяной или водовоздушной струей под давлением 0,5-0,7 МПа.
Достоинством этого способа является то, что очистку можно производить почти сразу же после укладки слоя при прочности бетона 0,3 МПа, то есть когда уже образовалась достаточно прочная структура бетона и нет опасности нарушения сцепления крупного заполнителя с растворной частью. При такой прочности по поверхности бетона можно ходить, хотя остаются следы от обуви и поверхность поддается продавливанию при нажиме пальцем с некоторым усилием. Время достижения этой прочности в зависимости от свойств бетонной смеси, влажности и температуры окружающего воздуха и находится в пределах от 4 до 18 ч.
К недостаткам очистки водяной или водовоздушной струей относятся:
-на практике невозможно применение этого способа очистки рабочих швов при отрицательных температурах окружающего воздуха и на вертикальных стыкуемых поверхностей, длительное время закрытых опалубкой;
-на поверхности остается нерастворимая в воде цементная пленка;
-содержащееся в сжатом воздухе компрессорное масло образует на поверхности антиадгезионную пленку.
4. Процесс химической очистки соляной кислотой является не эффективным и технически неоправданным.
В минералогии качественной реакцией на отличие кальцита (карбоната кальция) от других породообразующих минералов является бурное разложение в холодной соляной кислоте. Предложение по снятию цементной пленки, содержащей карбонаты, с помощью соляной кислоты не следует рекомендовать из-за опасности снижения долговечности бетона.
Именно этим объясняется мощный отрицательный эффект от ее применения:
-наблюдается поверхностное растворение и разрушение не только цементной пленки, но и цементного камня, что служит причиной разрушения шва между старым и новым бетоном в процессе эксплуатации;
-незначительно увеличивается прочность сцепления, по сравнению с необработанной поверхностью;
-требуется дополнительная операция нейтрализации кислоты щелочью (едким натром) с промывкой водой;
-потеря поверхностной прочности приводит к пылению бетона и требует дополнительного обязательного обеспыливания перед нанесением растворной смеси.
5. Для увеличения временного интервала между укладкой бетонной смеси и удалением цементной пленки и поверхностного слоя бетона, а также облегчения процесса очистки рабочего шва используют замедлители твердения, например, пластификатор бетонной смеси – сульфитно-дрожжевую бражку (СДБ). Раствор СДБ 15-20%-ной концентрации наносится на поверхность уложенного бетона краскораспылителем. Удаление ослабленного поверхностного слоя может проводиться как приводными щетками, так и под напором струи воды до полного отделения незатвердевшего слоя и удаления желтых пятен от СДБ.
К недостаткам этого способа можно отнести:
-обработку поверхности можно начинать не раньше, чем через сутки после укладки бетона; верхний предел времени обработки зависит от температуры воздуха и колеблется от двух до четырех суток;
-необходимо очень внимательно следить за тем, чтобы не снизить прочность основного бетона;
-применение замедлителей твердения недопустимо при проведении бетонирования не только в зимний, но даже в весенне-осенний период.
СП 70.13330.2012 СНиП 3.03.01-87 Несущие и ограждающие конструкции
Страница 3 из 9
5. Бетонные работы
5.1. Материалы для тяжелых и мелкозернистых бетонов
5.1.1. Для приготовления бетонных смесей следует применять цементы по ГОСТ 10178 и ГОСТ 31108, сульфатостойкие цементы — по ГОСТ 22266 и другие цементы по стандартам и техническим условиям в соответствии с областями их применения для конструкций конкретных видов (Приложение Л). Применение пуццоланового портландцемента допускается только в случае специального указания в проекте.
5.1.2. Для бетона дорожных и аэродромных покрытий, дымовых и вентиляционных труб, железобетонных шпал, вентиляционных и башенных градирен, опор высоковольтных линий, мостовых конструкций, железобетонных напорных и безнапорных труб, стоек опор, свай для вечномерзлых грунтов должен применяться портландцемент на основе клинкера с нормированным минералогическим составом по ГОСТ 10178.
5.1.3. Заполнители для тяжелых и мелкозернистых бетонов должны удовлетворять требованиям ГОСТ 26633, а также требованиям на конкретные виды заполнителей: ГОСТ 8267, ГОСТ 8736, ГОСТ 5578, ГОСТ 26644, ГОСТ 25592, ГОСТ 25818 (Приложение М).
5.1.4. В качестве модификаторов свойств бетонных смесей, тяжелых и мелкозернистых бетонов следует применять добавки, удовлетворяющие требованиям ГОСТ 24211 и техническим условиям на конкретный вид добавки (Приложение Н).
5.1.5. Вода затворения бетонной смеси и приготовления растворов химических добавок должна соответствовать требованиям ГОСТ 23732.
5.2. Бетонные смеси
5.2.1. При возведении монолитных и сборно-монолитных конструкций и сооружений бетонные смеси на строительную площадку поставляются в готовом виде или приготовляются на стройплощадке.
5.2.2. Бетонные смеси, готовые к употреблению, приготавливают, транспортируют и хранят в соответствии с требованиями ГОСТ 7473.
Приготовление бетонной смеси на строительной площадке должно осуществляться на стационарных или передвижных бетоносмесительных установках в соответствии с требованиями ГОСТ 7473 по специально разработанному технологическому регламенту.
5.2.3. Подбор состава бетонной смеси производят с целью получения в конструкциях бетонов с заданными показателями качества (бетонные смеси заданного качества) либо иметь заданный состав (бетонные смеси заданного состава).
За основу при подборе состава бетона следует принимать определяющий для данного вида бетона и назначения конструкции показатель бетона. При этом должны быть обеспечены и другие установленные проектом показатели качества бетона.
Состав бетонной смеси заданного качества подбирают по ГОСТ 27006 с учетом требований, предъявляемых к классам эксплуатации бетонов по ГОСТ 31384.
Свойства подобранной бетонной смеси должны соответствовать технологии производства бетонных работ, включающей сроки и условия твердения бетона, способы, режимы приготовления и транспортирования бетонной смеси и другие особенности процесса (ГОСТ 7473, ГОСТ 10181).
5.2.4. Бетонные смеси должны соответствовать показателям качества по удобоукладываемости, расслаиваемости, пористости, температуре, сохраняемости свойств во времени, объему вовлеченного воздуха, коэффициенту уплотнения.
5.2.5. Транспортирование и подачу бетонных смесей следует осуществлять специализированными средствами, обеспечивающими сохранение заданных свойств бетонной смеси.
Восстановление подвижности бетонной смеси на месте укладки допускается только с помощью добавок пластификаторов в оговоренных в технологических регламентах случаях под контролем строительных лабораторий.
5.2.6. Требования к составу, приготовлению и транспортированию бетонных смесей приведены в таблице 5.1.
Таблица 5.1
Параметр Величина параметра Контроль (метод, объем, вид регистрации)
1. Число фракций крупного заполнителя при крупности зерен, мм: Измерительный, по ГОСТ 8269.0
до 40 Не менее двух
свыше 40 Не менее трех
2. Наибольшая крупность заполнителя для: Измерительный, по ГОСТ 8269.0
железобетонных конструкций Не более 2/3 наименьшего расстояния между стержнями арматуры
тонкостенных конструкций Не более 1/2 толщины конструкции
при перекачивании бетононасосом Не более 1/3 внутреннего диаметра трубопровода
в том числе зерен наибольшего размера лещадной и игловатой форм Не более 35% массы
при перекачивании по бетоноводам содержание песка крупностью менее, мм: Измерительный, по ГОСТ 8735
0,14 5 — 7%
0,3 15 — 20%
5.3. Подготовка основания и укладка бетонной смеси
5.3.1. Для обеспечения прочного и плотного сцепления бетонного основания со свежеуложенным бетоном требуется:
удалить поверхностную цементную пленку со всей площади бетонирования;
срубить наплывы бетона и участки нарушенной структуры;
удалить опалубку штраб, пробки и другие ненужные закладные части;
очистить поверхность бетона от мусора и пыли, а перед началом бетонирования поверхность старого бетона продуть струей сжатого воздуха.
5.3.2. Прочность бетонного основания при очистке от цементной пленки должна составлять не менее:
0,3 МПа — при очистке водной или воздушной струей;
1,5 МПа — при очистке механической металлической щеткой;
5,0 МПа — при очистке гидропескоструйной или механической фрезой.
Примечание. Прочность бетона основания определяется по ГОСТ 22690.
5.3.3. В зимнее время при укладке бетонных смесей без противоморозных добавок необходимо обеспечить температуру основания не менее 5 °C. При температуре воздуха ниже минус 10 °C бетонирование густоармированных конструкций (при расходе арматуры более 70 кг/м3 или расстоянии между параллельными стержнями в свету менее 6dmax) с арматурой диаметром более 24 мм, арматурой из жестких прокатных профилей по ГОСТ 27772 или с крупными металлическими закладными частями следует выполнять с предварительным отогревом металла до положительной температуры, за исключением случаев укладки предварительно разогретых бетонных смесей (при температуре смеси выше 45 °C).
5.3.4. Все конструкции и их элементы, закрываемые в процессе последующего производства работ (подготовленные основания конструкций, арматура, закладные изделия и др.), а также правильность установки и закрепления опалубки и поддерживающих ее элементов должны быть приняты производителем работ в соответствии с СП 48.13330.
5.3.5. В железобетонных и армированных конструкциях отдельных сооружений состояние ранее установленной арматуры должно быть перед бетонированием проверено на соответствие рабочим чертежам. При этом следует обращать внимание во всех случаях на выпуски арматуры, закладные части и элементы уплотнения, которые должны быть очищены от ржавчины и следов бетона.
5.3.6. Укладку и уплотнение бетона следует выполнять по ППР таким образом, чтобы обеспечить заданную плотность и однородность бетона, отвечающих требованиям качества бетона, предусмотренных для рассматриваемой конструкции настоящим сводом правил, ГОСТ 18105, ГОСТ 26633 и проектом.
Порядок бетонирования следует устанавливать, предусматривая расположение швов бетонирования с учетом технологии возведения здания и сооружения и его конструктивных особенностей. При этом должна быть обеспечена необходимая прочность контакта поверхностей бетона в шве бетонирования, а также прочность конструкции с учетом наличия швов бетонирования.
При бетонировании массивных конструкций самоуплотняющимися бетонными смесями возможен вариант укладки одновременно по всей площадке конструкции с взаимно перекрывающимися зонами растекания смеси.
5.3.7. Бетонную смесь укладывают бетононасосами или пневмонагнетателями при интенсивности бетонирования не менее 6 м3/ч, а также в стесненных условиях и в местах, недоступных для других средств механизации.
5.3.8. Перед началом уплотнения каждого укладываемого слоя бетонную смесь следует равномерно распределить по всей площади бетонируемой конструкции. Высота отдельных выступов над общим уровнем поверхности бетонной смеси перед уплотнением не должна превышать 10 см. Запрещается использовать вибраторы для перераспределения и разравнивания укладываемого слоя бетонной смеси. Уплотнять бетонную смесь в уложенном слое следует только после окончания распределения и разравнивания ее на бетонируемой площади.
5.3.9. Укладка следующего слоя бетонной смеси допускается до начала схватывания бетона предыдущего слоя. Продолжительность перерыва между укладкой смежных слоев бетонной смеси без образования рабочего шва устанавливается строительной лабораторией. Верхний уровень уложенной бетонной смеси должен быть на 50 — 70 мм ниже верха щитов опалубки.
5.3.10. При уплотнении бетонной смеси не допускается опирание вибраторов на арматуру и закладные изделия, тяжи и другие элементы крепления опалубки. Глубина погружения глубинного вибратора в бетонную смесь должна обеспечивать углубление его в ранее уложенный слой на 5 — 10 см. Шаг перестановки глубинных вибраторов не должен превышать полуторного радиуса их действия, поверхностных вибраторов — должен обеспечивать перекрытие на 100 мм площадкой вибратора границы уже провибрированного участка.
Бетонную смесь в каждом уложенном слое или на каждой позиции перестановки наконечника вибратора уплотняют до прекращения оседания и появления на поверхности и в местах соприкосновения с опалубкой блеска цементного теста и прекращения выхода пузырьков воздуха.
5.3.11. Виброрейки, вибробрусья или площадочные вибраторы могут быть использованы для уплотнения только бетонных конструкций; толщина каждого укладываемого и уплотняемого слоя бетонной смеси не должна превышать 25 см.
При бетонировании железобетонных конструкций поверхностное вибрирование может быть применено для уплотнения верхнего слоя бетона и отделки поверхности.
5.3.12. Поверхность рабочих швов, устраиваемых при укладке бетонной смеси с перерывами, должна быть перпендикулярна оси бетонируемых колонн и балок, поверхности плит и стен. Возобновление бетонирования допускается производить по достижении бетоном прочности не менее 1,5 МПа. Рабочие швы по согласованию с проектной организацией допускается устраивать при бетонировании:
колонн и пилонов — на отметке верха фундамента, низа порогов, балок и подкрановых консолей, верха подкрановых балок, низа капителей колонн;
балок больших размеров, монолитно соединенных с плитами, — на 20 — 30 мм ниже отметки нижней поверхности плиты, а при наличии в плите капителей — на отметке низа капителей плиты;
плоских плит — в любом месте параллельно меньшей стороне плиты;
ребристых покрытий — в направлении, параллельном второстепенным балкам;
отдельных балок — в пределах средней трети пролета балок в направлении, параллельном главным балкам (прогонам) в пределах двух средних чертежей пролета прогонов и плит;
массивов, арок, сводов, резервуаров, бункеров, гидротехнических сооружений, мостов и других сложных инженерных сооружений и конструкций — в местах, указанных в проекте.
5.3.13. Требования к укладке и уплотнению бетонных смесей приведены в таблице 5.2.
Таблица 5.2
Параметр Предельные отклонения Контроль (метод, объем, вид регистрации)
1. Прочность поверхностей бетонных оснований при очистке от цементной пленки: Не менее, МПа: Измерительный, по ГОСТ 17624, ГОСТ 22690, журнал бетонных работ
водной и воздушной струей 0,3
механической щеткой 1,5
гидропескоструйной или механической фрезой 5,0
2. Высота свободного сбрасывания бетонной смеси в опалубку конструкций в случаях, когда это не оговорено в технических регламентах ППР, может быть принята следующей: Не более, м: Измерительн
Деформационный шов в железобетонных конструкциях
В недавно построенных домах вследствие влияния определенных факторов появляются трещины. Температурные швы в железобетонных конструкциях, усадочные, осадочные и прочие носят название деформационных, и являются профилактикой этих нежелательных последствий, возникающих в сейсмических зонах, местностях с большой амплитудой перепадов температуры, и в зданиях, построенных на разных видах грунта или на гористом рельефе.
Деформационный шов предназначается для снижения нагрузок на части конструктивных элементов в зонах вероятных деформаций.
Что это такое?
Это своеобразный разрез полов, стен и потолков построек, заполненный изоляционным материалом (герметиком, замазкой, эластичными лентами), который делит фасад постройки на отдельные секторы. Его главная функция — предотвратить деформацию, смещение или разрушение постройки, забрать часть напряжения каркаса и повысить упругость блоков.
Существует много видов швов, различающихся по цели применения, но самые популярные из них следующие:
Некоторые виды стыков используются чаще других.- температурно-усадочные швы;
- осадочные;
- антисейсмические.
Устройство деформационных швов
Температурные
Используют в помещениях с частыми изменениями уровня влаги и температуры. В качестве материала для деформационной конструкции применяют древесину, потому что она обеспечивает прочность бетонной стяжки и предотвращает трещины между блоками. Деревянные рейки размещают по отметкам, перерезая постройку по длине и ширине от крыши до верха основы.
При формировании такого стыка необходимо использовать деревянные рейки.Антисейсмические
Ставятся в постройках, строящихся в районах, подверженных частым землетрясениям. Они делят здание по всей высоте, затрагивая наземную часть. Расстояние между антисейсмическими швами и их параметры утверждены в проекте строительства. По линиям таких швов ставят двойные стены или подобные сооружения несущих конструкций, которые входят в число горизонтальных и вертикальных поддерживающих элементов.
Усадочные
При затвердевании бетона стены уменьшается в размерах, что является одной из самых распространенных причин возникновения трещин, которые ослабляют мощь монолитных держателей. Для из устранения используют усадочные швы. При высыхании этого стройматериала они расширяются вместе с ним, а после окончательной усадки стен — наглухо заделываются герметиком.
Формирование такого типа стыка необходимо для предупреждения появления трещин на стенах.Осадочные
Используются в сооружениях, имеющих блоки разной высоты, этажности и установленных на разных типах грунта. Эти швы укладываются при заливке фундамента и разрезают дом начиная от основы, и заканчивая последними этажами. При затвердевании бетона, его расширение — главная причина появления трещин. Для предотвращения нежелательных последствий и обеспечения возможности разрывам пролечь по специальным ущельям или под ними, необходимо сделать надрез на глубину ¼—½ высоты фундамента. Демпфера принимают на себя тепловые и усадочные горизонтальные расширения материалов при их стыках.
Расстояние и основные положения
Нормы построения деформационных конструкций, соотношения в размерах, формулы для вычисления персональных параметров, в том числе и расстояние между деформационными швами, детально описано в строительных нормах и правилах (сокращенно СНиП). Еще подробная информация содержится в своде правил (далее СП). Согласно СП 27.13330.2011 (п. 6.27), расстояние между температурно-усадочными деформационными швами в железобетоне определяются формулой. Ее можно не соблюдать, если выбранные расчеты не больше значений, обозначенных в таблице (при показателе температуры -40 °С, относительной влажности воздуха 60%, и высоте потолка 3 м).
Тип | Отапливаемые постройки или грунт, м | Неотапливаемые помещения, м | На улице, м |
Сборные и сборно-каркасные одноэтажные | 72 | 60 | 48 |
Те же многоэтажные | 60 | 50 | 40 |
Сборно-блочные/сборно-панельные | 55 | 45 | 35 |
Сборно-монолитные/монолитные каркасные | 50 | 40 | 30 |
Те же сплошные | 40 | 30 | 25 |
Посмотреть «СП 27.13330.2011» или cкачать в PDF (0 KB)
Размер блоков, между которыми размещаются деформационные швы, определен параметрами, описанными в следующих нормативных документах:
- СНиП 2.03.04—84 (п. 17);
- СП 52—110—2009.
Посмотреть «СНиП 2.03.01-84» или cкачать в PDF (0 KB)
Посмотреть «СП 52-110-2009» или cкачать в PDF (0 KB)
Например, температурно-усадочные швы укладываются шириной от 20 мм, постройка делится на равные блоки, деление начинается от фундамента. В осадочных же разрез идет по вертикали и его ширина также не должна быть меньше 20 мм. Для их поддержания и профилактики возникновения трещин в них же вставляют металлическую конструкцию, которая является герметиком и усилителем.
Деформационный шов в железобетонных конструкциях
Вернуться на страницу «Деформационные швы»
Рассмотрим следующие нормативные требования.
СП 27.13330.2011 БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ, ПРЕДНАЗНАЧЕННЫЕ ДЛЯ РАБОТЫ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОВЫШЕННЫХ И ВЫСОКИХ ТЕМПЕРАТУР
Актуализированная редакция СНиП 2.03.04-84
6.27 Расстояние между температурно-усадочными швами в бетонных и железобетонных конструкциях из обычного и жаростойкого бетонов должны устанавливать расчетом. Расчет допускается не выполнять, если принятое расстояние между температурно-усадочными швами не превышает значений, указанных в таблице 6.3, в которой наибольшие расстояния между температурно-усадочными швами даны для бетонных и железобетонных конструкций с ненапрягаемой и с предварительно напряженной арматурой, при расчетной зимней температуре наружного воздуха минус 40 °С, относительной влажности воздуха 60% и выше и высоте колонн 3 м.
Таблица 6.3
Тип конструкций | Наибольшие расстояния между температурно-усадочными швами, м, допускаемые без расчета для конструкций, находящихся | ||
внутри отапливаемых зданий или в грунте | внутри неотапливаемых зданий | на наружном воздухе | |
Бетонные: | |||
а) сборные | 40 | 35 | 30 |
б) монолитные при конструктивном армировании | 30 | 25 | 20 |
в) монолитные без конструктивного армирования | 20 | 15 | 10 |
Железобетонные: | |||
а) сборные и сборно-каркасные одноэтажные | 72 | 60 | 48 |
б) сборные и сборно-каркасные многоэтажные | 60 | 50 | 40 |
в) сборно-блочные, сборно-панельные | 55 | 45 | 35 |
г) сборно-монолитные и монолитные каркасные | 50 | 40 | 30 |
д) сборно-монолитные и монолитные сплошные | 40 | 30 | 25 |
Примечания
1 Для железобетонных конструкций (позиция 2), расчетная температура внутри которых не превышает 50 °С, расстояния между температурно-усадочными швами при расчетной зимней температуре наружного воздуха минус 30, 20, 10 и 1 °С увеличивают соответственно на 10, 20, 40 и 60% и при влажности наружного воздуха в наиболее жаркий месяц года ниже 40, 20 и 10% уменьшают соответственно на 20, 40 и 60%. 2 Для железобетонных каркасных зданий (позиция 2, а, б, г) расстояния между температурно-усадочными швами увеличивают при высоте колонн 5 м — на 20%, 7 м — на 60% и 9 м — на 100%. Высоту колонн определяют: для одноэтажных зданий — от верха фундамента до низа подкрановых балок, а при их отсутствии — до низа ферм или балок покрытия; для многоэтажных зданий — от верха фундамента до низа балок первого этажа. 3 Для железобетонных каркасных зданий (позиция 2, а, б, г) расстояния между температурно-усадочными швами определены при отсутствии связей либо при расположении связей в середине температурного блока. Расстояния между температурно-усадочными швами в сооружениях и тепловых агрегатах с расчетной температурой внутри 70, 120, 300, 500 и 1000 °С уменьшают соответственно на 20, 40, 60, 70 и 90%. |
Отдельные конструктивные требования
9.35 Ширину температурно-усадочного шва b в зависимости от расстояния между швами l определяют по формуле
b = εi l (9.6)
Относительное удлинение оси элемента εi вычисляют в зависимости от вида конструкции и характера нагрева по 6.21-6.24.
Ширину температурно-усадочного шва, вычисленную по формуле (9.6), увеличивают на 30%, если шов заполняется асбестовермикулитовым раствором, каолиновой ватой или шнуровым асбестом, смоченным в глиняном растворе (рисунок 9.2).
а — шов, заполненный шнуровым асбестом; б — то же, с бетонным бруском; в — то же, с металлическим компенсатором; 1 — шнуровой асбест, смоченный в глиняном растворе; 2 — бетонный брусок; 3 — компенсатор; 4 — стальной стержень диаметром 6 мм
Рисунок 9.2 — Температурные швы в конструкциях из жаростойкого бетона
Температурно-усадочные швы в бетонных и железобетонных конструкциях принимают шириной не менее 20 мм.
Когда давление в рабочем пространстве теплового агрегата не равно атмосферному, температурно-усадочный шов должен иметь уширение для установки бетонного бруса. Брус устанавливают насухо без раствора. Между брусом и менее нагретой поверхностью шов заполняют легко деформируемым теплоизоляционным материалом.
В печах, где требуется герметичность рабочего пространства, с наружной поверхности в температурно-усадочном шве должен предусматриваться компенсатор.
что это такое, устройство, СНиП
Холодный шов при бетонировании выполняют довольно часто при наличии определенных условий и необходимости. Так, в ходе реализации монолитных работ с использованием бетонного раствора заливку производят горизонтально слоями одинаковой толщины. Обычно укладку бетона осуществляют непрерывно, перекрывая слои до схватывания.
Когда же объемы работ слишком большие и бетонируют с перерывами, перекрытие уложенного раньше слоя следующим делают лишь после набора монолитом нужной прочности. В таком случае актуально выполнение холодных швов в зонах соприкосновения уложенных в разное время слоев. Этот шов еще называют рабочим и при условии соблюдения технологии его создания, а также при наличии прямой необходимости такой вариант позволяет сохранить прочность бетона и основные характеристики конструкции.
Рабочий шов бетонирования чаще всего делают там, где сложно или невозможно осуществлять заливку непрерывно: обычно это большие площади, требующие временных и трудозатрат на монтаж опалубки и арматурного каркаса. Продолжительность укладки бетона всегда ограничивается временем начала схватывания смеси в уложенном ранее слое.
Оптимальное время перекрытия слоев определяют в условиях строительной лаборатории, точный показатель зависит от погодных условий, специфики цемента, температуры и влажности окружающей среды. Если строительная смесь укладывается с перерывами, возобновлять работы можно лишь при наборе слоем прочности более 1.5 МПа с выполнением рабочих швов при бетонировании. Данная технология актуальна как в частном, так и в промышленном строительстве.
По своей сути рабочий шов – это всегда ослабленное место, но если сделать все правильно и в соответствии с требованиями СНиП, то такое решение поможет избежать проблем с нарушением целостности конструкции и понижением прочности из-за неодновременной заливки.
Благодаря устройству рабочего шва удается добиться максимальных характеристик бетона, снизить деформационные нагрузки, правильно уменьшить площади заливаемых участков. Технология заливки бетона не предполагает возможности заливки смеси слоями без проведения дополнительных мероприятий для обеспечения прочности и надежности.
Причины возникновения
Технология заливки монолита предполагает использование двух методов – непрерывной заливки раствора и укладки картами в виде отдельных блоков. Предпочтительный вариант – использование первого способа, обеспечивающего лучшие условия схватывания и твердения бетона.
Такая укладка предполагает пластичность нижнего слоя в момент заливки верхнего, что гарантирует хорошую адгезию, равномерный набор прочности и монолитность. Но реализовать метод удается далеко не всегда.
Основные причины заливки бетона с выполнением холодных швов:- Ограниченное время рабочих смен, наличие перерывов в работе техники, спецтранспорта.
- Временные затраты на монтаж арматурных каркасов, лесов, сборку опалубки.
- Ограничение нагрузок на поверхность, которая еще не набрала достаточную прочность.
- Бетонирование закладных деталей, вводов коммуникаций.
- Обеспечение направленных деформаций изделий и элементов при нагружении.
- Создание первым этапом горизонтальной части конструкции, вторым – вертикальной.
- Большие перерывы в работе после схватывания раствора.
- Нехватка опалубки, технологического оборудования, лесов.
- Недостаточный объем бетона для заливки в один цикл.
- Недоукомплектованность бригады работников.
- Малая мощность техники, недостаточная квалификация кадров.
В случаях, когда избежать этого невозможно, швы бетонирования и места их расположения продумывают заранее. Желательно избегать возможности появления спонтанных швов, а заранее согласовывать их с проектировщиком, делать в соответствии с технологическими перерывами, соблюдать технологию. Запрещено выполнение таких стыков в конструкциях, где есть растягивающие усилия.
В чертежах холодный шов бетонирования обозначается выноской с его названием и указанием точных размеров от осей конструкции, здания. Кроме технологических, часто в конструкции делают деформационные швы, основная задача которых – компенсировать усадочные и температурные перемещения монолита бетона.
В получившийся зазор монтируют изоляционные полосы, специальные рейки либо шнуры. Эти стыки также обязательно выносятся на проектный чертеж с обозначением.
Недостатки рабочих швов
Избежать основных минусов обустройства холодных швов можно в случае учета их в проекте и правильного выполнения. Когда же устройство швов не предполагалось, но они получились спонтанно, могут появляться существенные проблемы.
Основные минусы холодных швов:- В зоне стыка появляется ослабленный участок, что представляет опасность для ответственных и нагруженных конструкций, так как снижается несущая способность.
- В микротрещины может попадать вода, провоцируя протечки и корродирование арматуры, самого бетона. Зимой вода замерзает и разрушает монолит.
- Понижение водонепроницаемости, морозостойкости, механической прочности камня.
- Значительное уменьшение срока эксплуатации конструкции/здания.
- Наличие заметных дефектов на поверхности монолита.
В зоне стыка на поверхности бетона появляется точка внутренних напряжений с преобладанием растягивающих усилий. Бетон прекрасно работает на сжатие, а вот другие виды нагрузок выдерживает не так легко. Область шва деформируется постепенно, повышая риски разрушения всего здания или конструкции.
Ситуация становится еще более серьезной, если в холодные швы попадает вода. Она вымывает компоненты камня, ускоряет разрушение материала. Особенно это опасно в случаях, когда фундаментный монолит заглублен в почву, также есть риски для резервуаров, гидротехнических сооружений. Агрессивные вещества из грунта провоцируют химическую коррозию бетона.
Если холодные швы не предусмотреть в проекте или сделать не по технологии, попавшая вовнутрь вода также будет способствовать механическому повреждению монолита зимой за счет попеременных замораживания и оттаивания.
Расположение швов по СНиП
Нормы и правила выполнения холодных швов бетонирования прописываются в соответствующих документах. Основное требование такое: независимо от условий, шов не должен стать зоной концентрации напряжения. Расположение стыка должно быть выполнено перпендикулярно оси колонн, балок, любой плиты, других бетонируемых элементов/конструкций.
Когда и где можно делать холодные швы:- Для отдельных балок с выполнением шва в границах средней трети пролета.
- Для монолитно объединенных с плитами балок крупных габаритов (стык делают на отметке 20-30 миллиметров ниже поверхности плиты).
- Для колонн при условии, что стык находится на отметке низа капителей, прогонов, подкрановых балок либо верха фундамента.
- Для массивов, сводов, арок, резервуаров, сложных конструкций, сооружений, где швы располагают в предусмотренных проектом зонах.
- Для плоских плит, где шов можно обустроить в любом месте, но исключительно параллельно меньшей стороне плиты.
Идеальный вариант – это когда холодный шов совпадает с положением минимальной (нулевой) поперечной силы в конструкции монолита. Такое место находят при выполнении специальных расчетов (в эпюре сил поперечного типа).
При проведении расчетов вручную находят место пересечения эпюрой горизонтали (именно тут поперечная сила обычно стремится к нулю). При проведении расчетов с применением программ анализируют эпюры поперечных сил либо их цветных схем (так более наглядно).
На всех схемах и чертежах стык слоев бетона обозначают пунктиром. Чтобы более четко определить, делают выноску с названием «рабочий шов бетонирования». Схемы, указанные в чертежах, должны быть четко выполнены, изменять положение стыков запрещено. Все рекомендации и нормы указаны в СНиП 3.03.01-87.
Технология устройства
Холодный шов должен быть выполнен так, чтобы обеспечивать максимально плотное прилегание и качественное сцепление слоев бетона. В качестве препятствия могут выступать разные загрязнения, вода, которые обязательно удаляются. Но в данном случае недостаточно просто очистить поверхность – цементную пленку, которая ухудшает адгезию между слоями, разрушают.
Методы разрушения цементной пленки между старым и новым слоями:- Механический – с применением электрических/ручных инструментов: металлических щеток с проволокой, пескоструйных пистолетов, фрезеровальной установки, струй воды, воздушного компрессора и т.д.
- Химический – предполагает промывку кислотой: обычно используют уксусную, соляную, ортофосфорную кислоты, которые растворяют цементную пленку и открывают в структуре бетона поры. После проведения травления монолит промывают водой.
Дополнительно на поверхности шва могут наносить насечки, покрывать клеевыми, битумными, полимерными мастиками, повышающими сцепление между уже схватившимся и последующим слоями в разы. На зону соединения укладывается арматурная упрочняющая сетка с мелкими ячейками, хорошо показало себя применение оцинкованных шпонок с 2 рабочими поверхностями.
Этапы выполнения холодного шва:- Правильный выбор места стыка на основе СП 70.13330.2012 (тут четко указаны допустимые границы для плоских/ребристых плит, колонн, балок). Для отмосток, полов, иных покрытий зоны выбирают в соответствии с объемами бетона и использующейся технологией.
- Создание ровного края в процессе бетонирования, ожидание момента набора смесью минимум 1.5 МПа (обычно время выжидания составляет 1-3 суток).
- Подготовка стыка с использованием механического или химического метода очистки. Но мастера советуют комбинировать оба способа.
- Заливка участка стыка бетоном, уплотнение и выравнивание смеси.
- В случае отсутствия предварительной подготовки места шва бетон прорезают вдоль стыка специальной машиной с соответствующим алмазным диском.
В случае обустройства изоляционных, температурных, конструкционных, усадочных швов герметизации стыков уделяют особое внимание. Для этого применяют гернитовые, бентонитовые шнуры, набухающие профили, способные компенсировать подвижки бетонных монолитов и исключить возможность попадания влаги.
Надежность и целостность конструкции в процессе бетонирования с выполнением швов напрямую зависит от правильности выбора места расположения стыков, качества адгезии слоев. Часто для повышения сцепления предыдущий слой делают неровным, обрабатывают определенным образом затвердевший монолит.
Обязательно очищают арматуру. Растворы, залитые в разных слоях, должны демонстрировать идентичные показатели и характеристики, основными из которых являются прочность и несущая способность.
Рекомендации
Холодный шов обустраивается с обязательными мероприятиями по гидроизоляции. Правильно выполненная защита позволит исключить возможность попадания в шов воды, улучшит свойства монолита. Для качественной гидроизоляции применяют инъектирование, специальные смеси, набухающие шнуры и гидрошпонки.
Сначала твердый бетонный монолит шлифуют алмазными дисками, качественно очищают, потом закладывают вовнутрь шнур или заполняют мастикой. Основная задача в таком случае – качественная защита краев от попадания влаги.
Хорошо себя показали гигроскопичные материалы – неопрен, каучук, пористая резина и любые вещества, способные тянуться. Современный рынок предлагает большой выбор герметиков, подходящих для реализации задачи.
Методы выполнения гидроизоляции холодных швов:- Инъектирование цементно-песчаного раствора, силикатными и силоксановыми смесями. Шов заполняют раствором через специальные пакеты под давлением. Компоненты оказываются в структуре бетона, создают непроницаемую для воды мембрану. Актуально для влажных поверхностей.
- Использование пенетрирующих смесей, которые проникают вовнутрь. Шов заполняют гидропробкой, затирают пастой гидроизолирующей. Таким образом обычно ремонтируют стены подвалов, трещины на фундаменте, но не используют метод для испытывающих динамические нагрузки конструкций.
- Прокладка шнура на основе бетонита и каучука, который впитает влагу и защитит стык.
- Использование инъекционного шланга – набухающие неопреновые вставки обеспечат максимальную герметизацию стыка.
- Гермитовый профиль – специальная прокладка из пористой резины, которая уплотняет и не дает проникать вовнутрь влаге.
- Большую адгезию можно обеспечить, обработав затвердевший уже бетон клеевыми, битумными, грунтовочными составами.
- В условиях высотного домостроения швы делают со специальным армированием – применяются 1 и больше сеток разного типа, двухсторонние шпонки, сделанные из оцинкованной стали.
- При спонтанном появлении холодных стыков соединения между слоями желательно расшить по периметру и залить герметиком.
Чтобы обеспечить прочность и долговечность конструкции или здания, необходимо соблюдать технологию заливки. И при больших объемах, наличии перерывов в работе обустройство холодных швов нужно внести в проект и выполнить правильно, что обеспечит наилучшие технические характеристики готового монолита.
На главную | База 1 | База 2 | База 3 |
Поиск по реквизитамПоиск по номеру документаПоиск по названию документаПоиск по тексту документа |
Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК «Трансстрой»СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской областиТЕРм Карачаево-Черкесская РеспубликаТЕРм Мурманская областьТЕРм Республика ДагестанТЕРм Республика КарелияТЕРм Ямало-Ненецкий автономный округТЕРмрТЕРмр Алтайский крайТЕРмр Белгородская областьТЕРмр Карачаево-Черкесская РеспубликаТЕРмр Краснодарского краяТЕРмр Республика ДагестанТЕРмр Республика КарелияТЕРмр Ямало-Ненецкий автономный округТЕРпТЕРп Алтайский крайТЕРп Белгородская областьТЕРп Калининградской областиТЕРп Карачаево-Черкесская РеспубликаТЕРп Краснодарского краяТЕРп Республика КарелияТЕРп Ямало-Ненецкий автономный округТЕРп Ярославской областиТЕРрТЕРр Алтайский крайТЕРр Белгородская областьТЕРр Калининградской областиТЕРр Карачаево-Черкесская РеспубликаТЕРр Краснодарского краяТЕРр Новосибирской областиТЕРр Омской областиТЕРр Орловской областиТЕРр Республика ДагестанТЕРр Республика КарелияТЕРр Ростовской областиТЕРр Рязанской областиТЕРр Самарской областиТЕРр Смоленской областиТЕРр Удмуртской РеспубликиТЕРр Ульяновской областиТЕРр Ямало-Ненецкий автономный округТЕРррТЕРрр Ямало-Ненецкий автономный округТЕРс Ямало-Ненецкий автономный округТЕРтр Ямало-Ненецкий автономный округТехнический каталогТехнический регламентТехнический регламент Таможенного союзаТехнический циркулярТехнологическая инструкцияТехнологическая картаТехнологические картыТехнологический регламентТИТИ РТИ РОТиповая инструкцияТиповая технологическая инструкцияТиповое положениеТиповой проектТиповые конструкцииТиповые материалы для проектированияТиповые проектные решенияТКТКБЯТМД Санкт-ПетербургТНПБТОИТОИ-РДТПТПРТРТР АВОКТР ЕАЭСТР ТСТРДТСНТСН МУТСН ПМСТСН РКТСН ЭКТСН ЭОТСНэ и ТЕРэТССЦТССЦ Алтайский крайТССЦ Белгородская областьТССЦ Воронежской областиТССЦ Карачаево-Черкесская РеспубликаТССЦ Ямало-Ненецкий автономный округТССЦпгТССЦпг Белгородская областьТСЦТСЦ Белгородская областьТСЦ Краснодарского краяТСЦ Орловской областиТСЦ Республика ДагестанТСЦ Республика КарелияТСЦ Ростовской областиТСЦ Ульяновской областиТСЦмТСЦО Ямало-Ненецкий автономный округТСЦп Калининградской областиТСЦПГ Ямало-Ненецкий автономный округТСЦэ Калининградской областиТСЭМТСЭМ Алтайский крайТСЭМ Белгородская областьТСЭМ Карачаево-Черкесская РеспубликаТСЭМ Ямало-Ненецкий автономный округТТТТКТТПТУТУ-газТУКТЭСНиЕР Воронежской областиТЭСНиЕРм Воронежской областиТЭСНиЕРрТЭСНиТЕРэУУ-СТУказУказаниеУказанияУКНУНУОУРврУРкрУРррУРСНУСНУТП БГЕИФАПФедеральный законФедеральный стандарт оценкиФЕРФЕРмФЕРмрФЕРпФЕРрФормаФорма ИГАСНФРФСНФССЦФССЦпгФСЭМФТС ЖТЦВЦенникЦИРВЦиркулярЦПИШифрЭксплуатационный циркулярЭРД |
Показать все найденные Показать действующие Показать частично действующие Показать не действующие Показать проекты Показать документы с неизвестным статусом |
Упорядочить по номеру документаУпорядочить по дате введения |
Держите их водонепроницаемыми и устойчивыми к трещинам
Бетонные компенсационные швы важны для вашего тротуара или проезжей части.
Сохранение водонепроницаемости ваших стыков предотвратит просачивание влаги под бетонные подушки и их вздыбливание или проседание. В этом посте рассказывается, как выполнить эту задачу.
Назначение компенсационного шва из бетона — позволить подушкам расширяться и сжиматься (становиться больше и меньше) при изменении температуры и влажности.
Если у вас есть дети, подумайте о компенсаторе как о себе, а о бетонных подушках — как о своих детях — поставьте в очередь воспоминания о том, как они стояли между двумя детьми, когда они пытаются разорвать друг друга.Что ж, иногда я так себя чувствую со своими дочерьми (разве плохо, если я считаю себя компенсатором, который сдерживает споры об одежде, еде и волосах?).
Хорошие новости !!
Очень просто защитить и отремонтировать компенсационный шов из бетона. И сделать проект в эти выходные намного дешевле, чем нанять подрядчика для замены сильно поврежденной бетонной подъездной дороги или тротуара.
Вот материалы, которые вам понадобятся
Этот список материалов может показаться устрашающим из-за угловой шлифовальной машины.
Но что может быть лучше, чтобы начать использовать один из этих замечательных инструментов, и они могут быть очень доступными.
Итак, давайте начнем и заделываем ваш бетонный компенсатор, чтобы он был защищен от погодных воздействий!
Удаление старого материала из бетонного деформационного шва
Бетонные деформационные швы также известны как изоляционные швы.
Как я уже сказал во вступлении, эти соединения позволяют бетонным подушкам расширяться и сжиматься во время циклов замораживания-оттаивания.
Без бетонного компенсатора тротуар или подъездная дорожка потрескались бы.
Если вы посмотрите на деформационные швы между бетоном, вы можете увидеть черный войлок или старый герметик.
Необходимо удалить старый герметик и изношенный войлок.
Когда я позвонил Sika, компании, которая производит самовыравнивающийся герметик для такого рода проектов, они сказали мне использовать универсальный нож для удаления старого материала и счистить все оставшиеся остатки ацетоном.Если вы сделаете этот шаг, убедитесь, что ацетоновая вспышка высохла (Sika сказала, что нужно подождать около 1 часа).
Вы можете попробовать эту технику универсального ножа. Но я обнаружил, что люди, которые владели нашим домом, нанесли слой нового герметика поверх старого. И у меня был настоящий беспорядок, потому что оба герметика отделялись от бетона.
Если вы попали в такое же затруднительное положение, лучше всего подойдет угловая шлифовальная машина со стандартным отрезным кругом или алмазным диском.
Конечно, соседи могут подумать, что вы немного сошли с ума.Но они также дважды подумают, чтобы отправить своих детей на сбор средств (что может быть хорошо).
.
Расширяющиеся и усадочные соединения в бетонных конструкциях
Бетонная конструкция
Железобетон — важный строительный материал, он обладает прочностью, долговечностью и может принимать различные формы. Тщательный дизайн важен для обеспечения правильной работы конструкции. Железобетон должен быть спроектирован и изготовлен с учетом неизбежных движений, которые будут иметь место:
• Усадка — Первоначально быстрая, менее значительная по мере старения бетона.
• Ползучесть — явление, которое вызывает перераспределение напряжения от точек интенсивности.
• Тепловое движение — Расширение и сжатие конструкции при изменении температуры.
Конструкции спроектированы с компенсационными и усадочными швами в соответствующих местах, чтобы это движение могло происходить. Конструкция соединения важна для правильного функционирования всей конструкции.
Обычные шпоночные соединения
Дюбели используются для передачи сдвига через конструкцию и деформационные швы в бетоне.Обычно они заливаются или просверливаются в бетоне. Один ряд коротких толстых дюбелей обеспечивает приемлемую передачу сдвига, но страдает от деформации. Это может привести к концентрации напряжений, что приведет к последующему растрескиванию бетона.
Если дюбели используются в компенсационных и усадочных швах, половина длины стержня открепляется, чтобы обеспечить движение.
Трудности с обычными суставами
Смещенные дюбели ограничивают движение и могут привести к растрескиванию.
Дюбельные соединения
Дюбельные соединения требуют либо просверливания опалубки для прохождения дюбелей, либо просверливания бетона для дюбелей, которые можно закрепить смолой с одной стороны.
Если дюбели используются в деформационных швах, дюбели должны быть точно выровнены в обоих направлениях, чтобы гарантировать, что движение действительно может иметь место, иначе может произойти растрескивание.
Одинарные дюбели не очень эффективны при использовании в швах шириной более 10 мм.
Шпоночные шарниры допускают дифференциальное движение и могут привести к растрескиванию.
Шпоночные соединения
Шпоночные соединения требуют сложной опалубки для создания гребня и паза.Если соединение сформировано неправильно, может иметь место дифференциальное движение. Нагрузка передается через локально уменьшенную часть соединения, что иногда может привести к растрескиванию.
Решение DSD для суставов
В большинстве случаев обычные соединения с дюбелями или шпонками могут быть заменены соединениями с соединителями DSD, работающими на сдвиг. Они более эффективны при передаче нагрузки и позволяют перемещаться, их легче исправить на месте, и они являются гораздо более экономичным решением.Их можно использовать для деформационных швов в плитах перекрытий, подвесных плит, а также для замены двойных колонн и балок в деформационных швах конструкций. Применения в гражданском строительстве включают соединения парапетов мостов, опор мостов и конструкции диафрагмальных стен.
Традиционные строительные соединения Ancon Engineered Solutions
Плита перекрытия — дюбель
Анкон DSD
Стена
Шпоночное соединение
Анкон DSD
Структурный сустав движения
Двойные столбцы Анкон DSDПодключение пола к стене
Поддержка Corbel Анкон DSD
Онлайн CPD от Ancon
Поскольку мы все меняем свой способ работы, Ancon расширил свои технические услуги, включив в него вебинары «по запросу», которые позволяют тем из вас, кто практикует социальное дистанцирование, работая дома или в офисе, быть в курсе вашего профессионального развития. ,
В Анконе отмечается Международный день женщин-инженеров
Вторник, 23 июня 2020 года, — всемирно отмечаемый Международный день женщин в инженерном деле (INWED). Ancon будет чествовать своих инженеров-женщин, познакомившись с некоторыми из них поближе и поделившись с вами своим опытом.
,