Теплообменник для теплого пола, подогрева дорожек и ступенек
Для создания комфорта и микроклимата на сегодняшний день наиболее популярным техническим решением становится — теплый водяной пол.
Пластинчатый теплообменник для нагрева воды или теплоносителя идеально подходит для данного направления. Компактные размеры позволяют смонтировать теплообменный аппарат в уже существующую схему отопления с минимальными доработками.
Теплообменный аппарат разделяет греющий и нагреваемый контуры тем самым становится возможным плавно регулировать температуру теплоносителя на выходе. Также раздельный контур хладоносителя обеспечивает безопасность и энергоэффективность.
Применение
Теплый пол в жилом помещении
Экономить электроэнергию создавая комфортные условия в жилом помещении стало возможным благодаря паяным пластинчатым теплообменникам.
Теплые ступеньки
Решение с теплыми ступеньками поможет избежать травм в зимнее время. В межсезонье отдыхая с друзьями на террасе вы обеспечите себе полный комфорт.
Теплые дорожки
Отбор тепла
- Котел отопления
- Полотенцесушитель
- Центральное отопление
Схема подключения
На рисунке показаны две схемы подключения, а также график температур нагреваемой и греющей стороны.
Теплообменники для теплого пола
Практические советы
- Расширительный бак небольшой емкости обеспечивает скорость циркуляции.
- Не приобретайте товары сомнительного производства это обеспечит вам защиту от разного рода сюрпризов таких как протечки, ожоги и прочее.
P.S.
Наша компания занимается продажей теплообменных аппаратов для разных сфер применения. За более точной информацией по теме «водяной теплый» пол советуем обратится к специалистам этой области.
Пластинчатый теплообменник для тёплого водяного пола
Обустраивая свое жилище, каждый старается сделать его максимально комфортным, уютным и безопасным. Водяные теплые полы появились относительно недавно, однако их популярность возрастает с каждым годом, и многие отдают предпочтение именно такой системе обогрева.
Водяной теплый пол более надежный, безопасный и экономичный, в отличие от электрического.
При его обустройстве от системы центрального отопления, часто применяется коллекторная система подачи теплоносителя. Однако наряду с насосами, коллекторными системами устанавливается теплообменник.
Система тёплого пола с теплообменником
Принцип действия
Теплообменник — это устройство, благодаря которому осуществляется обмен теплом в напольной и центральной системе отопления. Принцип его работы базируется на том, что вода, проходящая по системе центрального водоснабжения, передает тепло жидкости, циркулирующей в теплых полах.
Теплообменник для тёплого водяного пола
Таким образом, если у вас в доме отключат центральное отопление или оно вовсе отсутствует, то на температуре пола это никак не отразится. Но стоит учесть, что вам понадобится не только теплообменник, но и расширительный бак, узел с грязевиком и группа безопасности.
Самые элементарные образцы теплообменников выглядят как конструкция «труба в трубе».
Водяной теплый пол в квартире функционирует с носителем, температура которого до 45°. Благодаря работе при такой невысокой температуре создается более благоприятный климат и воздух насыщается положительными ионами.
Устанавливают теплообменник чаще всего по вертикали. Осуществляя монтаж устройства, нужно уделять внимание диаметрам подключения.
Самым распространённым является пластинчатый теплообменник. Он состоит из пластинчатых элементов с оригинальной штампованной конфигурацией. Эти элементы находятся параллельно по отношению друг к другу и внутри устройства создаются два контура: один отдает тепловую энергию, другой — приобретает. Внешние элементы конструкции обособлены от тех частей, которые проводят тепло. Это значит, что энергия практически не теряется и вы можете не беспокоиться, что кто-то из домашних получит ожог, если нечаянно коснется теплообменника. Пластинчатые теплообменники производятся из качественных сталей, которые отличаются химической инертностью и устойчивостью к коррозии.
Принцип работы пластинчатого теплообменника
Преимущества использования теплообменника
Используя теплообменник при обогреве квартиры с помощью тёплого водяного пола, можно получить множество преимуществ:
- Водяной пол намного выгоднее электрического, а с теплообменником вы не будете зависеть от центрального отопления и сможете обогревать полы в любое время.
Мощность теплообменника для тёплого пола рекомендуется брать с запасом.
- Такая система отопления не требует больших затрат электроэнергии и является более экономной.
- Функционирование теплообменника устроено таким образом, что его температура снижаться не будет и давление в системе не понизится.
- В трубах будет отсутствовать ржавая вода.
Всё это позволяет сделать вывод, что устанавливать теплообменник необходимо при монтаже тёплого водяного пола.
Теплообменник для тёплого пола: работа аппарата напольного обогрева
Комфорт, экологическая чистота, экономичность и безопасность – главные факторы, которые определяют эффективное обустройство дома современного человека.
И чтобы создавать в помещении благоприятный микроклимат, люди все чаще устанавливают водяной теплый пол в квартире или загородном доме. Такие системы, если сравнивать их с электрическими аналогами, имеют весомые преимущества:
- полностью безопасны для жильцов;
- совмещены со всеми типами напольных покрытий;
- более надежны, энергоэффективны и экономичны;
- универсальны и интегрируемые с уже установленными нагревательными деталями и разными автоматическими устройствами.
Основы установки и схемы подсоединения
Водяной пол в квартире взаимодействует с носителем, температура которого не выше 45 градусов.
Низкотемпературный режим работы позволяет создать более благоприятный микроклимат и насыщает воздух положительными ионами, что актуально для аллергиков, детей и тех, у кого астма.
Если комплектация оснащения и схема теплого пола в доме сделаны правильно и с учетом инженерных подсчетов, то можно не только получить качественный обогрев, но и полностью отказаться от применения батарей, расширив тем самым полезное пространства и изменив планировку комнаты.
Если вам интересно, как обустроить теплый пол в квартире, придется изучить метод расчета гидравлического сопротивления и показателя теплоотдачи, поработать над вопросом комплектации системы эффективным и регулирующим оборудованием, а также над процессом теплоизоляции и внешнего декора полов.
При установке в загородных домах и квартирах системы теплого пола не стоит забывать о риске замерзания самого системы. В такой ситуации в носитель лучше добавить этиленгликоль.
Проживание в многоэтажных домах имеет ряд технических ограничений на снабжение энергосберегающих технологий.
Установленный теплый пол от централизованного отопления в квартире намного повышает общее гидросопротивление, что сказывается на качестве обогрева соседних помещений.
И если в новых зданиях элемент водяного отопления часто уже заложен в конструкцию, то получить официальное разрешение на переоборудование старых домов нереально.
Выход есть. Сегодня многие инженерные специалисты и те, кто решил установить теплый пол своими руками, применяют пластинчатый аппарат для теплого пола. Благодаря монтажу этого небольшого устройства, можно получить:
- рост эффективности обогрева;
- компактность и повышенную надежность схемы;
- гидравлическую автономность устройства.
Пластинчатый теплообменник: компактное и эффективное устройство
Теплообменник для теплого пола в квартире является главным устройством, которое передает тепло от внешнего носителя из общей теплостанции к внутреннему элементу. Он состоит из пластинчатых деталей с оригинальной штампованной конфигурацией.
Они находятся параллельно друг к другу, и внутри устройства формируются два элемента: отдающий и получающий тепловую энергию, которые свободно омывают каждую пластину.
Внешние конструктивные детали скрыты от теплопроводных частей, поэтому потери энергии сведены к нулю, и можно не переживать, что члены семьи, дети и питомцы получат термический ожог от случайного касания к теплообменнику.
Маленькое гидравлическое сопротивление, минимальный внутренний объем при большой площади контакта, хорошая хаотичность потоков – все это обеспечивает высокий показатель теплоотдачи и равномерный обогрев жидкой местности.
Репродуктивный обмен энергиями, которым снабжает теплообменник теплый пол и центральное отопление, позволяет исключить контакта содержащего ржавчину и извести теплоносителя централи с более чистым хладагентом замкнутого элемента отопления полов.
А так как пластинчатые детали производятся из качественной легированной стали, которая характеризуется химической инертностью и высокой устойчивостью к коррозии, то чистота рабочей местности поддерживается в течение долгого времени, поэтому:
- снижается появление отложений извести;
- уменьшаются расходы на применяемый внешний теплоноситель;
- возрастает срок эксплуатации оборудования;
- покупка оптимального теплообменника.
Широкий выбор конструкций, размеров и коммерческих предложений усложняет выбор теплообменника для теплого пола. Поэтому перед приобретением нужно:
- грамотно подсчитать рабочее давление, объем и скорость нагревательного и греющего элементов, минимальной площади пластинчатых деталей. Для этого можно воспользоваться услугами специалистов продающей организации или использовать специальное программное обеспечение;
- грамотно проанализировать технико-эксплуатационные параметры и условия установочного подсоединения. Менеджеры выбранной компании предоставят полный список технических качества и объяснят специфику подсоединения разных вариантов;
- учесть вариант проведения работы по ремонту и обслуживанию. Теплообменник для теплого пола в квартире, как и другое любое технологическое устройство, нуждается в профилактическом обслуживании. Разборные модели нужно чистить в сервисных центрах, также возможна замена уплотнителей. Паяные модели можно мыть своими руками или воспользоваться услугами специалистов;
- определить конструктивное исполнение. Разборные модели обладают ярко выраженным техническим дизайном, в базовой комплектации предназначены на предельное рабочее давление до 25 бар и нуждаются в систематическом осмотре. Паяные модели более компактные, обладают обтекаемыми формами и стильным дизайном, могут выдерживать давление до 35 бар.
Устанавливая теплый пол через теплообменник в квартире, вы должны обеспечить его работу и гидробезопасность, сохранить полезное пространство и не испортить дизайн помещения.
Поэтому лучше выбирать паяный пластинчатый теплообменник, стоимость таких модификаций ниже, чем у разборных систем.
Как сделать водяной теплый пол от центрального отопления?
Домашний уют во многом обусловлен тем микроклиматом, который царит в доме. Однако центральная система отопления далеко не всегда позволяет создать желаемые условия, поэтому часто наилучшим выходом оказывается система теплого пола, которая эффективно справляется со своей задачей даже в лютый холод, обеспечивая быстрый и качественный обогрев. Помещение прогревается наиболее равномерно, в квартирах на первых этажах это настоящее спасение. Из этой статьи Вы узнаете, как правильно подключить водяной теплый пол к центральному отоплению при помощи пластинчатого теплообменника.
Устройство теплообменника, как посредника
Но сначала давайте подробно рассмотрим, как именно он работает. Итак, теплообменники рассматриваемого типа делятся на неразборные (паяные) и разборные, их производят из самых различных материалов. Стать и латунь предусматривают использование в условиях сильного давления. Медные варианты с большим успехом применяются в пивной промышленности, они удобны для резкого охлаждения пива, тут высокое давление отсутствует, зато нужна хорошая скорость теплопроводности, которой как раз таки и обладает данный цветной металл. Поэтому данный теплообменник подходит для подключения водяного теплого пола к центральному отоплению.
Вообще такие теплообменники имеют широкую сферу применения, их успешно задействуют в системах охлаждения, отопления, при работе с химикатами, вместе с солнечными коллекторами при подключении к бойлеру и так же при подключении водяного теплого пола к центральному отоплению.
Для чего нужен теплообменник?
Рассмотрим пластинчатый неразборный теплообменник. На корпусе присутствует четыре выхода, то есть два контура. Устройство разделяет потоки по давлению, по температуре и т. д., может применяться для охлаждения, однако, нам он необходим для отопления, чтобы обеспечить правильное подключение теплых полов. На один контур подключается данная система, а на другой – ТЭЦ. Прямое подключение водяного теплого пола к центральному отоплению может быть связано с опасностью быстрого выхода из строя теплых полов, так как для теплоносителя ТЭЦ свойственны высокие температуры, сильное давление, здесь также специальные химические реактивы и множество мусора. Все эти факторы явно не поспособствуют продлению срока службы теплых полов.
Так, теплообменник позволяет создать в домашних условиях автономную систему теплого пола с незагрязненной водой и оптимальным давлением. С одной стороны пластины идёт грязная вода от ТЭЦ с большим давлением, а с другой – чистая вода от нашей автономной системы с маленьким давлением. Такая пластина обеспечивает четкое герметичное разделение, качественную теплопередачу, смешивание потоков полностью исключается. Число таких тонких пластин определяет мощностные характеристики теплообменника.
Подбор теплообменника для подключению ТЭЦ
Для того, чтобы правильно подобрать теплообменник для подключения водяного теплого пола к центральному отоплению, нужно определить степень загрязненности теплоносителя, чтобы понять, насколько вода нуждается в очистке. Если налет небольшой, то вполне хватит фильтра грубой очистки, задерживающего в себе стружку и окалину. Такой фильтр можно очистить специальными средствами, если через какое-то время он загрязнится и потребует очистки.
На каждом теплообменнике обязательно имеется информация о типе изделия, фирме-производителе, указывается максимальное и тестовое давление, максимальная рабочая температура, схема расположения крепления, обязательно обозначение контуров, которые могут располагаться как по диагонали, так и в вертикальной плоскости. Специальная стрелка показывает направление монтажа изделия, то есть, в каком именно положении его следует устанавливать. Важно понимать, как происходит отток теплоносителей. Сама циркуляция осуществляется за счет так называемого циркуляционного насоса.
На схеме в паспорте обычно можно найти, как правильно осуществить установку. Например, один из вариантов – прижать изделие к стене крепежной лентой или консолью и, воспользовавшись специальным уголком, прикрутить. Фильтры являются обязательными к установке, необходим хотя бы грубый фильтр.
Монтаж теплообменника
Монтаж чаще всего осуществляется по вертикали. Диаметр подключения, габариты и мощность подключения водяного теплого пола к центральному отоплению могут быть разными в разных устройствах. Особое внимание хочется уделить именно диаметрам подключения. Мощность лучше брать с запасом, ведь этот параметр не соотносится с размерами, разница может составить лишь несколько сантиметров. При этом увеличивается инерция теплосъема. Это актуально в особенности в тех случаях, когда температура от ТЭЦ не слишком высокая, например, если она составляет не более семидесяти градусов.
После того как установлен распределитель теплого пола, на него собирается насос с трехходовым клапаном. Далее осуществляется монтаж электрокотла (для межсезонного использования), включая необходимое навесное оснащение. То есть, сначала соединяется подача теплообменника от котла, затем врезаются тройники, распределитель с клапаном соединяется, ставятся термометры и в наиболее удобном месте устанавливается расширительный бак, например, можно сделать это под раковиной. Необходимо осуществлять монтаж таким образом, чтобы был обеспечен удобный доступ ко всему оборудованию.
Посмотрите подробное видео по тому, как подключить водяной теплый пол к центральному отоплению через теплообменник:
Если схема была смонтирована неверно, то последствия могут быть негативными, поэтому ошибок допускать ни в коем случае нельзя. Лучше доверить такую работу опытным профессионалам, которые в курсе всех возможных нюансов.
Теплообменник для теплого пола
Комфорт, гигиеничность, безопасность и экономичность – основные факторы, определяющие концепцию обустройства жилища современного человека. И чтобы создать в помещении оптимальный температурный баланс люди все чаще люди монтируют водяной теплый пол в квартире или частном доме, тем более что по сравнению с электрическими аналогами такие системы отопления являются:
• Полностью безопасными для проживающих;
• Сочетаемыми со всеми видами напольных покрытий;
• Более надежными, энергоэффективными и экономичными;
• Универсальными и интегрируемыми с уже смонтированными контурами отопления и различными устройствами автоматики.
Основы обустройства и схемы подключения
Водяной теплый пол в квартире работает с носителем, температура которого не превышает 45 ˚С. Низкотемпературный режим работы способствует созданию более благоприятного климата и упраздняет перенасыщение воздуха положительными ионами, что особенно актуально для астматиков, аллергиков и семей с маленькими детьми. Если комплектация оборудования и схема теплого пола в квартире выполнены грамотно и на основе инженерных расчетов, то можно не только добиться качественного обогрева, но и полностью отказаться от использования радиаторов отопление, расширив тем самым полезную площадь и существенно изменив концепцию дизайна интерьера.
Если вы заинтересовались, как сделать теплый пол в квартире, то вам потребуется изучить порядок расчета гидравлического сопротивления и коэффициента теплоотдачи, проработать вопрос комплектации системы функциональным и регулирующим оборудованием, процесс выполнения теплоизоляции и декоративного оформления полов. При обустройстве загородных домов и дач не следует забывать о вероятности замерзания системы, в таком случае в носитель лучше изначально добавить этиленгликоль.
Проживание в многоквартирных домах накладывает ряд технических ограничений на внедрение энергосберегающих технологий. Смонтированный теплый пол от центрального отопления в квартире значительно увеличивает общее гидросопротивление, что тут же отражается на качестве отопления соседних помещений. И если в новых домах контур водяного отопления зачастую уже заложен конструктивно, то получить официальное разрешение на переобустройство старых домов практически не реально.
И выход найден! Сегодня большинство инженерных специалистов и тех, кто решился произвести монтаж системы самостоятельно, используют пластинчатый теплообменник для теплого пола. Благодаря установке этого малогабаритного устройства достигается:
- Увеличение эффективности отопления;
- Компактность и повышенная надежность схемы в целом;
- Гидравлическая автономность системы.
Пластинчатый теплообменник – компактен и эффективен
Функционально теплообменник для теплого пола в квартире – основное устройство, обеспечивающее процесс передачи тепла от внешнего носителя из общей теплоцентрали к внутреннему контуру. Он состоит из пластинчатых элементов с оригинальной штампованной конфигурацией. Они располагаются встречно-параллельно по отношению друг к другу и внутри устройства создаются два контура: отдающий и приобретающий тепловую энергию, которые независимо омывают каждую пластину. Внешние конструктивные элементы изолированы от теплопроводных частей, соответственно потери энергии сведены к минимуму и можно не бояться, что члены семьи, дети или домашние животные смогут получить термический ожог от случайного прикосновения к теплообменнику.
Малое гидравлическое сопротивление, незначительный внутренний объем при обширной площади контакта, хорошая турбулентность потоков обуславливают высокий коэффициент теплоотдачи и равномерный прогрев жидкой среды.
Репродуктивный обмен энергиями, который обеспечивает теплообменник для теплого пола от центрального отопления, позволяет избежать непосредственного контакта содержащего ржавчину и взвеси теплоносителя общей централи с более чистым хладогентом замкнутого контура отопления полов. А так как пластинчатые элементы изготавливаются из качественных легированных сталей, характеризующихся химической инертностью и высокой коррозионной стойкостью, чистота рабочей среды поддерживается на протяжении длительного периода и соответственно:
Минимизируется образование известковых отложений; Снижаются затраты на используемый внешний теплоноситель; Увеличивается эксплуатационный ресурс оборудования.
Разборной или паяный теплообменник? Обращайтесь к профессионалам!
Разнообразие конструкций, типоразмеров и коммерческих предложений вносит сумятицу и становится все сложней правильно выбрать теплообменник для теплого пола, купить наиболее оптимальную по цене и характеристикам модель. Поэтому перед покупкой необходимо:
1. Компетентно произвести расчет рабочего давления, объемов и скорости греющего и нагреваемого контуров, минимальной площади пластинчатых элементов. Для этого можно прибегнуть к услугам специалистов продающей компании или воспользоваться специализированным программным обеспечением.
2. Основательно произвести сравнительный анализ технико-эксплуатационных параметров и условий монтажного подключения. Менеджеры предоставят полный перечень технических характеристик и разъяснят специфику подключения различных вариаций.
3. Учесть вариант выполнения ремонтных и сервисных работ. Теплообменник для теплого пола в квартире от центрального отопления или индивидуальной системы загородного коттеджа, как и любое технологическое оборудование, требует профилактического обслуживания. Разборным моделям потребуется чистка в сервисных центрах и возможно замена уплотнителей, паяные можно промыть самостоятельно или посредством услуг профессионалов.
4. Определиться с конструктивным исполнением. Разборные модели имеют ярко выраженный технический дизайн, в стандартном исполнении рассчитаны на предельное рабочее давление до 25 бар и требуют проведения периодического осмотра. Паяные модели более компактные, имеют обтекаемые формы и лаконичный дизайн, могут выдерживать гидроудары до 35 бар.
Монтируя теплый пол от отопления в квартире важно обеспечить его функциональность и гидробезопасность, предельно сохранить полезную площадь и соблюсти высокую эстетичность интерьера. Поэтому в квартире целесообразней установить паяный пластинчатый теплообменник для теплого пола, цена данных модификаций к тому же несколько ниже, чем у разборных конструкций.
Обращение в профильную компанию гарантирует разнообразие ассортимента, предоставление компетентных консультаций и соответствие продукции Госстандартам и заявленным параметрам.
Теплообменники для теплого пола | Теплообменники от производителя с доставкой по России
Основным элементом современных энергоэффективных систем отопления являются теплые полы. Они появились довольно недавно и завоевали доверие покупателей простотой монтажа и эффективностью отопления. В отличии от радиаторов, поверхностью отопления является весь пол здания, который равномерно прогревает помещение и исключает возникновение зон перегрева или недогрева. Система теплых полов работает по довольно простому принципу. Теплоноситель от источника тепла попадает в теплообменник, где он нагревает внутренний теплоноситель, который и поступает в теплые полы, отдавая тепло помещению. В этой статье мы подробно рассмотрим различные варианты теплообменников для теплых полов.
Почему без теплообменника теплые полы работать не будут?
Основной задачей любой системы отопления является передача тепла от греющего теплоносителя к приборам отопления, которые осуществляют нагрев помещения. В теплых полах эту функцию выполняют теплообменники. В них происходит теплообмен между греющим и нагреваемым теплоносителем. Теплообменник является ключевым элементом, без которого мы не сможем передать тепло от источника тепла в приборы отопления.
Теплообменники для теплых полов бывают 2-х видов, паяные пластинчатые теплообменники или разборные пластинчатые теплообменники. Далее мы более подробно сравним их, и объясним, где и какие применять.
Паяный пластинчатый теплообменник для теплого пола.
Данный теплообменник представляет собой компактную конструкцию, где крепление пластин друг с другом осуществляется при помощи спаивания медью или никелем. Данная конструкция неразборная. Так как теплообменник компактный его можно применять в небольших помещениях или в квартире. У теплообменника более привлекательная стоимость при применении на небольших площадях теплого пола. Для данных теплообменников необходимо проводить техническое обслуживание (промывку, не реже 1 раза в год), это увеличит срок эксплуатации оборудования. Каждый паяный теплообменник рассчитывается индивидуально и подбирается под требования заказчика. Недостатком паяного теплообменника является невозможность увеличения мощности путем добавления теплообменных пластин. Если требуется увеличить площадь теплых полов, то необходимо приобретать новый паяный теплообменник.
Технические характеристики:
Максимальная рабочая температура — 200С
Максимальное рабочее давление — 30 бар
Преимущества:
Компактные размеры
Низкая стоимость
Высокие эксплуатационные характеристики
Недостатки:
Невозможность увеличения мощности
Промывка только химическим неразборным способом
Фото №1. Внешний вид паяного пластинчатого теплообменника.
Разборный пластинчатый теплообменник для теплого пола.
конструкции данного теплообменника пакет теплообменных пластин закреплён между двумя прижимными плитами, которые стянуты между собой оцинкованными шпильками. Применяется для теплых полов больших площадей. Одним из самых главных плюсов данного теплообменника является возможность увеличения мощности путем добавления теплообменных пластин. Данный теплообменник так же обязательно обслуживать не реже одного раза в год путем разборной промывки. Если применять на небольшую площадь теплых полов, то в сравнении с паяным теплообменником он имеет более высокую стоимость. При увеличении площади теплого пола выгодней брать разборноый теплообменник.
Технические характеристики:
Максимальная рабочая температура — 160С
Максимальное рабочее давление — 16 бар
Преимущества:
Возможность увеличения мощности теплообменника
Проще в техническом обслуживании (промывка, замена комплектующих и т.д.)
Недостатки:
Размеры больше в сравнении с паяными теплообменниками
При малой мощности теплого пола, выгоднее брать паяный теплообменник
Фото №2. Внешний вид разборного пластинчатого теплообменника.
Заключение:
Вышеперечисленные теплообменники применяются совместно с гидравлическими разделителями с коллекторами, в тех случаях, когда необходимо разделить контуры теплого пола. Мощность теплообменника зависит напрямую от площади теплого пола. Обратившись к нам, специалисты произведут Вам расчет теплообменника в кратчайшие сроки и ответят на все технические вопросы. В наличии на складе всегда находятся паяные теплообменники до 100 кВт., а разборные до 1200 кВт. Работаем со всеми транспортными компаниями и производим поставки во все регионы РФ.
Теплообменник для теплого пола – устройство для обогрева водяных полов
Занимаясь устройством напольного обогрева посредством водяных полов, зачастую применяют коллекторную систему подачи воды и котлы. Однако сегодня с ними наряду стоит еще один прибор – теплообменник для теплого пола. Принцип работы прибора, какие функции устройство выполняет и его преимущества – вот главные темы, что будут обсуждаться в статье.
Теплообменник в коллекторной системе
Особенности действия устройства
Теплообменник – это аппарат, что проводит обмен теплом теплоносителей в напольной и центральной системе отопления. Кроме широкого применения устройств для обмена теплом в промышленных отраслях, некоторые модели нашли свое место в коммунальном хозяйстве.
Главной функцией теплообменника признана передача тепловой энергии от воды, что поступает из центрального стояка, к воде, циркулирующей по трубопроводу напольного обогрева в квартире. Также обмен может производится от газа к воде. Самый примитивный теплообменник выглядит, как устройство типа «труба в трубе». Принцип нагрева воды можно сравнить в таком случае с приготовлением еды на паровой бане. Ниже можно рассмотреть обобщенную схему действия системы отопления с прибором.
Схема теплообменной системы
Благодаря теплообменнику напольное отопление не зависит от центрального отопления, однако кроме самого теплообменника придется также использовать узел с грязевиком для подпитки, группу безопасности, а также расширительный бак.
Схема подключения теплообменника
Преимущества
Применяя теплообменные устройства при обогреве квартиры водяным полом можно получить массу преимуществ.
Если монтаж водяного пола осуществили в многоквартирном сооружении с центральной отопительной системой, правильным решением будет применить теплообменник для водяного теплого пола, ведь он разработан с целью исключения влияния домашнего напольного обогрева на гидравлику отопления всего здания.
Важно! Исключается понижение градусов и уровня давления водного потока в центральном стояке, что не доставляет хлопот соседям по дому.
Кроме того, подключение нескольких теплообменных приборов к центральным отопительным стоякам позволит исключить поступления в трубопровод водяного пола ржавой и мутной жидкости из коммунальной системы. Тогда по трубам полов течет чистая вода, что значительно увеличивает надежность и долговечность многих составляющих частей системы.
Вконтакте
Google+
Страница не найдена | MIT
Перейти к содержанию ↓- образование
- Исследовательская работа
- новаторство
- Прием + помощь
- Студенческая жизнь
- Новости
- Alumni
- О MIT
- Подробнее ↓
- Прием + помощь
- Студенческая жизнь
- Новости
- Alumni
- О MIT
Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов
Предложения или отзывы?
,ТЕПЛООБМЕННИКИ
Теплообменник — это устройство, используемое для передачи тепла между двумя или более жидкостями. Жидкости могут быть одно- или двухфазными и, в зависимости от типа теплообменника, могут быть разделены или находиться в прямом контакте. Устройства, включающие источники энергии, такие как стержни ядерного топлива или огневые нагреватели, обычно не рассматриваются как теплообменники, хотя многие принципы, заложенные в их конструкции, одинаковы.
Чтобы обсудить теплообменники, необходимо дать некоторую форму категоризации.Обычно используются два подхода. Первый рассматривает конфигурацию потока в теплообменнике, а второй основан на классификации типа оборудования, прежде всего, по конструкции. Оба рассмотрены здесь.
Классификация теплообменников по конфигурации потока
Существует четыре основных конфигурации потока:
На рисунке 1 показан идеализированный противоточный теплообменник, в котором две жидкости текут параллельно друг другу, но в противоположных направлениях.Этот тип организации потока позволяет максимально изменить температуру обеих жидкостей и, следовательно, является наиболее эффективным (где эффективность — это количество фактически переданного тепла по сравнению с теоретическим максимальным количеством тепла, которое может быть передано).
Рисунок 1. Противоток.
В теплообменниках с прямоточным потоком потоки текут параллельно друг другу и в том же направлении, как показано на рисунке 2. Это менее эффективно, чем противоток, но обеспечивает более равномерную температуру стенок.
Рисунок 2. Попутный поток.
По эффективности теплообменники с перекрестным потоком занимают промежуточное положение между противоточными и параллельными теплообменниками. В этих установках потоки текут под прямым углом друг к другу, как показано на рисунке 3.
Рисунок 3. Поперечный поток.
В промышленных теплообменниках часто встречаются гибриды вышеуказанных проточных типов. Примерами являются комбинированные теплообменники с поперечным / противотоком и многоходовые теплообменники.(См., Например, рисунок 4.)
Рисунок 4. Поперечный / противоточный поток.
Классификация теплообменников по конструкции
В этом разделе теплообменники классифицируются в основном по их конструкции, Garland (1990) (см. Рисунок 5). Первый уровень классификации — разделение типов теплообменников на рекуперативные и регенеративные. Рекуперативный теплообменник имеет отдельные пути потока для каждой жидкости, и жидкости протекают одновременно через теплообменник, обмениваясь теплом через стенку, разделяющую пути потока.Рекуперативный теплообменник имеет единственный путь потока, по которому попеременно проходят горячие и холодные жидкости.
Рисунок 5. Классификация теплообменников.
Регенеративные теплообменники
В регенеративном теплообменнике путь потока обычно состоит из матрицы, которая нагревается, когда горячая жидкость проходит через нее (это известно как «горячий удар»). Это тепло затем передается холодной жидкости, когда она протекает через матрицу («холодный удар»).Рекуперативные теплообменники иногда называют емкостными теплообменниками . Хороший обзор регенераторов дает Walker (1982).
Регенераторы в основном используются для рекуперации тепла газа / газа на электростанциях и в других энергоемких отраслях. Два основных типа регенератора — статический и динамический. Оба типа регенераторов являются кратковременными в эксплуатации, и, если при их проектировании не уделить должного внимания, обычно происходит перекрестное загрязнение горячего и холодного потоков.Однако использование регенераторов, вероятно, расширится в будущем, поскольку предпринимаются попытки повысить энергоэффективность и утилизировать больше низкопотенциального тепла. Однако, поскольку регенеративные теплообменники, как правило, используются для специальных применений, рекуперативные теплообменники более распространены.
Рекуперативные теплообменники
Существует много типов рекуперативных теплообменников, которые можно в широком смысле сгруппировать в непрямой контакт, прямой контакт и специальные. В теплообменниках с непрямым контактом теплоносители отделяются друг от друга за счет использования трубок, пластин и т. Д., Теплообменники с прямым контактом не разделяют жидкости, обмениваясь теплом, и фактически полагаются на то, что жидкости находятся в тесном контакте.
В этом разделе кратко описаны некоторые из наиболее распространенных типов теплообменников, и они расположены в соответствии с классификацией, приведенной на рисунке 5.
В этом типе пары разделены стенкой, обычно металлической. Примерами являются трубчатые теплообменники, см. Рисунок 6, и пластинчатые теплообменники, см. Рисунок 7.
Трубчатые теплообменники очень популярны из-за гибкости, которую проектировщик должен учитывать в широком диапазоне давлений и температур.Трубчатые теплообменники можно разделить на несколько категорий, из которых кожухотрубные теплообменники являются наиболее распространенными.
Кожухотрубный теплообменник состоит из ряда трубок, установленных внутри цилиндрической оболочки. На рисунке 8 показан типичный блок, который можно найти на нефтехимическом заводе. Две жидкости могут обмениваться теплом, одна жидкость течет по внешней стороне трубок, а вторая жидкость течет по трубкам. Жидкости могут быть одно- или двухфазными и могут течь в параллельном или перекрестном / противотоке.Кожухотрубный теплообменник состоит из четырех основных частей:
Передняя часть — это то место, где жидкость входит в трубную часть теплообменника.
Задний конец — это то место, где жидкость на трубной стороне выходит из теплообменника или где она возвращается в передний коллектор в теплообменниках с несколькими проходами на трубной стороне.
Пучок труб — состоит из трубок, трубных решеток, перегородок, стяжек и т. Д. Для удержания пучка вместе.
Кожух — содержит пучок труб.
Популярность кожухотрубных теплообменников привела к разработке стандарта для их обозначения и использования. Это стандарт ассоциации производителей трубчатых теплообменников (TEMA). Обычно кожухотрубные теплообменники изготавливаются из металла, но для специальных применений (например, с использованием сильных кислот в фармацевтических препаратах) могут использоваться другие материалы, такие как графит, пластик и стекло. Также нормально, что трубы прямые, но в некоторых криогенных применениях используются спиральные катушки или катушки Хэмпсона .Простая форма кожухотрубного теплообменника — это двухтрубный теплообменник. Этот теплообменник состоит из одной или нескольких трубок, содержащихся внутри трубы большего размера. В самой сложной форме нет большой разницы между многотрубным двухтрубным теплообменником и кожухотрубным теплообменником. Однако двухтрубные теплообменники, как правило, имеют модульную конструкцию, поэтому несколько блоков могут быть соединены болтами для достижения требуемой нагрузки. Книга E.A.D. Сондерс [Saunders (1988)] дает хороший обзор трубчатых теплообменников.
К другим типам трубчатых теплообменников относятся:
Печи — технологическая жидкость проходит через печь в прямых или спирально намотанных трубах, а нагрев осуществляется горелками или электрическими нагревателями.
Пластинчатые трубы — в основном используются в системах рекуперации тепла и кондиционирования воздуха. Трубки обычно монтируются в какой-либо форме воздуховода, а пластины действуют как опоры и обеспечивают дополнительную площадь поверхности в виде ребер.
С электрическим нагревом — в этом случае жидкость обычно течет по внешней стороне электрически нагреваемых трубок (см. Джоулев нагрев).
Теплообменники с воздушным охлаждением состоят из пучка труб, вентиляторной системы и несущей конструкции. Трубки могут иметь ребра различного типа для обеспечения дополнительной площади поверхности со стороны воздуха. Воздух либо всасывается через трубы вентилятором, установленным над пучком (принудительная тяга), либо продувается через трубы вентилятором, установленным под пучком (принудительная тяга). Как правило, они используются в местах, где есть проблемы с получением достаточного количества охлаждающей воды.
Тепловые трубы, сосуды с мешалкой и теплообменники из графитовых блоков можно рассматривать как трубчатые или помещать в Рекуперативные «Особые предложения». Тепловая труба состоит из трубы, материала фитиля и рабочей жидкости. Рабочая жидкость поглощает тепло, испаряется и переходит на другой конец тепловой трубки, где конденсируется и выделяет тепло. Затем жидкость под действием капилляров возвращается к горячему концу тепловой трубы для повторного испарения. Сосуды с мешалкой в основном используются для нагрева вязких жидкостей.Они состоят из емкости с трубками внутри и мешалки, такой как пропеллер или ленточный винтовой импеллер. Трубки несут горячую жидкость, а мешалка вводится для обеспечения равномерного нагрева холодной жидкости. Теплообменники с угольным блоком обычно используются, когда необходимо нагреть или охладить агрессивные жидкости. Они состоят из твердых блоков углерода, в которых просверлены отверстия для прохождения жидкости. Затем блоки скрепляются болтами вместе с коллекторами, образуя теплообменник.
Пластинчатые теплообменники отделяют жидкости, обменивающиеся теплом, с помощью пластин.У них обычно есть улучшенные поверхности, такие как ребра или тиснение, и они скреплены болтами, припаяны или сварены. Пластинчатые теплообменники в основном используются в криогенной и пищевой промышленности. Однако из-за высокого отношения площади поверхности к объему, малого количества жидкостей и способности обрабатывать более двух паров они также начинают использоваться в химической промышленности.
Пластинчатые и рамные теплообменники состоят из двух прямоугольных концевых элементов, которые удерживают вместе несколько рельефных прямоугольных пластин с отверстиями на углу для прохождения жидкостей.Каждая из пластин разделена прокладкой, которая герметизирует пластины и обеспечивает поток жидкости между пластинами, см. Рис. 9. Этот тип теплообменника широко используется в пищевой промышленности, поскольку его можно легко разобрать для очистки. Если утечка в окружающую среду является проблемой, можно сварить две пластины вместе, чтобы гарантировать, что жидкость, протекающая между сваренными пластинами, не сможет протекать. Однако, поскольку некоторые прокладки все еще присутствуют, утечка все еще возможна. Паяные пластинчатые теплообменники предотвращают возможность утечки за счет пайки всех пластин вместе, а затем приваривания входных и выходных отверстий.
Рисунок 6. Классификация трубчатых теплообменников.
Рисунок 7. Классификация пластинчатого теплообменника.
Рисунок 8. Кожухотрубный теплообменник.
Рисунок 9. Пластинчато-рамный теплообменник.
Пластинчато-ребристые теплообменники состоят из ребер или прокладок, зажатых между параллельными пластинами. Ребра могут быть расположены так, чтобы допускать любую комбинацию поперечного или параллельного потока между соседними пластинами. Также возможно пропустить до 12 потоков жидкости через один теплообменник за счет тщательного расположения коллекторов.Обычно они изготавливаются из алюминия или нержавеющей стали и спаяны вместе. Их основное применение — сжижение газа из-за их способности работать с близкими температурами.
Пластинчатые теплообменники в некоторых отношениях аналогичны кожухотрубным. Прямоугольные трубы с закругленными углами уложены друг на друга, образуя пучок, который помещается внутри оболочки. Одна жидкость проходит через трубки, тогда как жидкость течет параллельно через зазоры между трубками.Они, как правило, используются в целлюлозно-бумажной промышленности, где требуются проточные каналы большего размера.
Спиральные пластинчатые теплообменники образуются путем наматывания двух плоских параллельных пластин вместе в змеевик. Затем концы уплотняются прокладками или свариваются. Они в основном используются с вязкими, сильно загрязняющими жидкостями или жидкостями, содержащими частицы или волокна.
В этой категории теплообменников не используется поверхность теплопередачи, из-за чего она часто дешевле, чем косвенные теплообменники.Однако, чтобы использовать теплообменник прямого контакта с двумя жидкостями, они должны быть несмешиваемыми, или, если будет использоваться одна жидкость, она должна претерпеть фазовый переход. (См. Прямая контактная теплопередача.)
Наиболее легко узнаваемая форма теплообменника с прямым контактом — градирня с естественной тягой, которая используется на многих электростанциях. Эти агрегаты состоят из большой примерно цилиндрической оболочки (обычно более 100 м в высоту) и насадки внизу для увеличения площади поверхности. Охлаждаемая вода распыляется на набивку сверху, в то время как воздух проходит через дно набивки и поднимается вверх через башню за счет естественной плавучести.Основная проблема, связанная с этим и другими типами градирен с прямым контактом, заключается в постоянной необходимости восполнения подачи охлаждающей воды за счет испарения.
Конденсаторы прямого контакта иногда используются вместо трубчатых конденсаторов из-за их низких капитальных затрат и затрат на обслуживание. Есть много вариантов конденсатора прямого контакта. В простейшей форме охлаждающая жидкость разбрызгивается сверху емкости над паром, поступающим сбоку емкости. Затем конденсат и охлаждающая жидкость собираются внизу.Большая площадь поверхности распылителя гарантирует, что они являются достаточно эффективными теплообменниками.
Закачка пара используется для нагрева жидкости в резервуарах или в трубопроводах. Пар способствует передаче тепла за счет турбулентности, создаваемой впрыском, и передает тепло за счет конденсации. Обычно конденсат не собирается.
Прямой нагрев в основном используется в сушилках, где влажное твердое вещество сушится путем пропускания его через поток горячего воздуха. Другой вид прямого нагрева — это горение под водой.Он был разработан в основном для концентрирования и кристаллизации коррозионных растворов. Жидкость испаряется пламенем, а выхлопные газы направляются вниз в жидкость, которая находится в резервуаре.
Воздухоохладитель с мокрой поверхностью в некоторых отношениях похож на теплообменник с воздушным охлаждением. Однако в устройствах этого типа вода распыляется по трубкам, а вентилятор всасывает воздух и воду по пучку труб. Вся система закрыта, и теплый влажный воздух обычно выбрасывается в атмосферу.
Скребковые теплообменники состоят из емкости с рубашкой, через которую проходит жидкость, и вращающегося скребка, который непрерывно удаляет отложения с внутренних стенок емкости. Эти агрегаты используются в пищевой и фармацевтической промышленности в тех случаях, когда на нагретых стенках сосуда с рубашкой образуются отложения.
Статические регенераторы или регенераторы с неподвижным слоем не имеют движущихся частей, кроме клапанов. В этом случае горячий газ проходит через матрицу в течение фиксированного периода времени, в конце которого происходит реверсирование, горячий газ отключается, а холодный газ проходит через матрицу.Основная проблема с этим типом агрегата заключается в том, что и горячий, и холодный поток прерывистый. Для преодоления этого и обеспечения непрерывной работы требуются по крайней мере два статических регенератора или можно использовать роторный регенератор.
В роторном регенераторе насадка цилиндрической формы вращается вокруг оси цилиндра между парой газовых уплотнений. Горячий и холодный газ протекает одновременно по каналам с обеих сторон газовых уплотнений и через вращающуюся насадку. (См. Рекуперативные теплообменники.)
Термический анализ любого теплообменника включает решение основного уравнения теплопередачи.
(1)Это уравнение рассчитывает количество тепла, передаваемого через область dA, где T h и T c — местные температуры горячей и холодной жидкости, α — местный коэффициент теплопередачи, а dA — местная дополнительная площадь, на которой α основывается. Для плоской стены
(2)где δ w — толщина стенки, а λ w — ее теплопроводность.
Для однофазного обтекания стенки α для каждого из потоков является функцией Re и Pr. Когда происходит конденсация или кипение, α также может зависеть от разницы температур. После того как коэффициент теплопередачи для каждого потока и стены известен, общий коэффициент теплопередачи U определяется выражением
(3)где сопротивление стенки r w равно 1 / α w . Общая скорость теплопередачи между горячей и холодной текучими средами тогда определяется выражением
(4)Это уравнение предназначено для постоянных температур и коэффициентов теплопередачи.В большинстве теплообменников это не так, поэтому используется другая форма уравнения
(5)где — общая тепловая нагрузка, U — средний общий коэффициент теплопередачи, а ΔT M — средняя разница температур. Расчет ΔT M и отказ от предположения о постоянном коэффициенте теплопередачи описаны в разделе «Средняя разница температур».
Расчет U и ΔT M требует информации о типе теплообменника, геометрии (например,g., размер проходов в пластине или диаметр трубы), ориентация потока, чистый противоток или поперечный поток и т. д. Затем можно рассчитать общую нагрузку с использованием предполагаемого значения AT и сравнить с требуемой нагрузкой. Затем можно внести изменения в предполагаемую геометрию и U, ΔT M и пересчитать, чтобы в конечном итоге перейти к решению, которое равно требуемой нагрузке. Однако при выполнении термического анализа на каждой итерации также следует проверять, не превышен ли допустимый перепад давления.Компьютерные программы, такие как TASC от HTFS (Heat Transfer and Fluid Flow Service), автоматически выполняют эти вычисления и оптимизируют конструкцию.
Механические аспекты
Все типы теплообменников должны пройти определенную механическую конструкцию. Любой теплообменник, работающий при давлении выше атмосферного, должен быть спроектирован в соответствии с местным кодом конструкции сосуда под давлением , например ASME VIII (Американское общество инженеров-механиков) или BS 5500 (Британский стандарт).Эти нормы определяют требования к резервуару высокого давления, но не касаются каких-либо специфических особенностей конкретного типа теплообменника. В некоторых случаях для определенных типов теплообменников существуют специальные стандарты. Два из них перечислены ниже, но в целом отдельные производители определяют свои собственные стандарты.
ССЫЛКИ
Гарланд, У. Дж. (1990) Частное сообщение.
Уокер, Г. (1982) Industrial Heat Exchangers-A Basic Guide , Hemisphere Publishing Corporation.
Rohsenow, W. M. и Hartnett, J. P. (1973) Handbook of Heat Transfer , New York: McGraw-Hill Book Company. DOI: 10.1016 / 0017-9310 (75)
-9
Сондерс, Э. А. Д. (1988) Теплообменники — выбор, проектирование и строительство, Longman Scientific and Technical. DOI: 10.1016 / 0378-3820 (89)
-5
Ассоциация производителей трубчатых теплообменников, (1988 г.) (ТЕМА), седьмое издание. Кожухотрубные теплообменники .
Американский институт нефти (API) 661: Теплообменники с воздушным охлаждением для нефтяной промышленности .
.Передача тепла теплообменниками
Теплообмен
Теплообмен — один из важнейших производственных процессов. На любом промышленном предприятии тепло необходимо добавлять, отводить или перемещать из одного технологического потока в другой. Существует три основных типа теплопередачи: теплопроводность, конвекция и излучение. Две наиболее распространенные формы, встречающиеся в химической обрабатывающей промышленности, — это кондукция и конвекция. Для передачи тепла от одного процесса к другому используются теплообменники.
Что такое теплообменники?
Теплообменник — это устройство, предназначенное для эффективной передачи тепла от одной среды к другой. Среда может быть разделена сплошной стенкой, чтобы они никогда не смешивались, или они могут находиться в прямом контакте. Они широко используются в системах отопления, охлаждения, кондиционирования воздуха, электростанциях, химических заводах, нефтехимических заводах, нефтеперерабатывающих заводах и переработке природного газа. Одним из распространенных примеров теплообменников является радиатор в автомобиле, в котором источник тепла, представляющий собой горячую охлаждающую жидкость двигателя, воду, передает тепло воздуху, протекающему через радиатор (т.е.е. теплоноситель).
Теплообменникибывают разных форм, размеров, марок и моделей, что их общие характеристики классифицируются. Одной общей характеристикой, которую можно использовать для их классификации, является направление потока двух жидкостей относительно друг друга.
COMSOL, Inc.
Три категории: параллельный поток, противоток и перекрестный поток.
- Параллельный поток существует, когда текучая среда со стороны трубы и текучая среда со стороны оболочки текут в одном направлении.
- Противоток существует, когда две жидкости текут в противоположных направлениях. Каждая из жидкостей входит в теплообменник с противоположных концов.
- Поперечный поток существует, когда одна жидкость течет перпендикулярно второй жидкости; то есть одна жидкость протекает через трубки, а вторая жидкость проходит вокруг труб под углом 90 °.
Наиболее распространенными типами теплообменников являются пластинчатые и кожухотрубные. К другим относятся регенеративные теплообменники, адиабатические колесные теплообменники, пластинчато-ребристые теплообменники, жидкостные теплообменники, блоки рекуперации отработанного тепла и теплообменники с динамической скребковой поверхностью.
На этом сайте будет обсуждаться кожухотрубный теплообменник «ТЕМА».
TEMA
следующий текст получен из ТЕМА 25 января 2010 г.
Ассоциация производителей трубчатых теплообменников, Inc. (TEMA) — это торговая ассоциация ведущих производителей кожухотрубных теплообменников, которые более шестидесяти лет возглавляют исследования и разработку теплообменников.
Стандарты и программное обеспечение TEMA получили всемирное признание в качестве авторитета в области механического проектирования кожухотрубных теплообменников.
TEMA — прогрессивная организация, устремленная в будущее. Члены хорошо осведомлены о рынке и активно участвуют в нем, собираясь несколько раз в год для обсуждения текущих тенденций в области дизайна и производства.
Внутренняя организация включает в себя различные подразделения, занимающиеся решением технических проблем и улучшением работы оборудования. Эти совместные технические усилия создают обширную сеть для решения проблем, повышая ценность от проектирования до изготовления.
Независимо от того, спроектирован, изготовлен или отремонтирован теплообменник, вы можете рассчитывать на членов TEMA, которые предоставят самые современные и эффективные конструкторские и производственные решения.
TEMA — это образ мышления: участники не только исследуют новейшие технологии, но и создают их.
Использование членов ТЕМА в качестве ресурса сегодня гарантирует надежных партнеров на долгие годы.
Другие страницы о теплообменниках
Часть 1: Теплообмен и типы теплообменников.
Часть 2: Кожухотрубные теплообменники.
Часть 3: Трубы и трубные листы теплообменников.
Часть 4: Сборка кожуха теплообменников.
Часть 5: Обозначения ТЕМА теплообменников.
,